Questions and Answers Relating to Lithium-Ion Battery Safety Issues

Cell Reports Physical Science - Tập 2 Số 1 - Trang 100285 - 2021
Wensheng Huang1,2, Xuning Feng2, Xuebing Han2, Weifeng Zhang2, Fachao Jiang1
1College of Engineering, China Agricultural University, Beijing 100083, China
2State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013

Zhang, 2019, Brief review of batteries for XEV applications, eTransportation, 2, 100032, 10.1016/j.etran.2019.100032

Wang, 2012, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038

Zhang, 2019, Causes analysis and countermeasures of automobile fire, Fire Sci. Technol., 38, 730

Evarts, 2018

Li, 2004, Statistical analysis of relationship between parameters of property of gasoline, In Chinese Internal Combustion Engine Engineering, 5, 28

Xu, 2020, Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry, J. Energy Storage, 31, 101670, 10.1016/j.est.2020.101670

Finegan, 2015, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nat. Commun., 6, 6924, 10.1038/ncomms7924

Finegan, 2017, Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits, Energy Environ. Sci., 10, 1377, 10.1039/C7EE00385D

Ping, 2015, Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test, J. Power Sources, 285, 80, 10.1016/j.jpowsour.2015.03.035

Feng, 2020, Mitigating thermal runaway of lithium-ion batteries, Joule, 4, 743, 10.1016/j.joule.2020.02.010

Feng, 2019, Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database, Appl. Energy, 246, 53, 10.1016/j.apenergy.2019.04.009

Ren, 2019, A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries, eTransportation, 2, 100034, 10.1016/j.etran.2019.100034

Han, 2019, A review on the key issues of the lithium ion battery degradation among the whole life cycle, eTransportation, 1, 100005, 10.1016/j.etran.2019.100005

Zhang, 2019, Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries, eTransportation, 1, 100004, 10.1016/j.etran.2019.100004

Li, 2019, Thermal runaway triggered by plated lithium on the anode after fast charging, ACS Appl. Mater. Interfaces, 11, 46839, 10.1021/acsami.9b16589

Zhu, 2018, A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources, 378, 153, 10.1016/j.jpowsour.2017.12.034

Zhu, 2016, Deformation and failure mechanisms of 18650 battery cells under axial compression, J. Power Sources, 336, 332, 10.1016/j.jpowsour.2016.10.064

Li, 2019, Data-driven safety envelope of lithium-ion batteries for electric vehicles, Joule, 3, 2703, 10.1016/j.joule.2019.07.026

Zhang, 2015

Tomaszewska, 2019, Lithium-ion battery fast charging: a review, eTransportation, 1, 100011, 10.1016/j.etran.2019.100011

Zavalis, 2012, Investigation of short-circuit scenarios in a lithium-ion battery cell, J. Electrochem. Soc., 159, A848, 10.1149/2.096206jes

Feng, 2018, Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode, Front. Energy Res., 6, 126, 10.3389/fenrg.2018.00126

Chu, 2017, Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model, Appl. Energy, 204, 1240, 10.1016/j.apenergy.2017.03.111

Feng, 2015, Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery, Appl. Energy, 154, 74, 10.1016/j.apenergy.2015.04.118

Tao, 2020, An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times, J. Clean. Prod., 242, 118539, 10.1016/j.jclepro.2019.118539

Feng, 2020, A reliable approach of differentiating discrete sampled-data for battery diagnosis, eTransportation, 3, 100051, 10.1016/j.etran.2020.100051

Tanim, 2020, Advanced diagnostics to evaluate heterogeneity in lithium-ion battery modules, eTransportation, 3, 100045, 10.1016/j.etran.2020.100045

Feng, 2016, Online internal short circuit detection for a large format lithium ion battery, Appl. Energy, 161, 168, 10.1016/j.apenergy.2015.10.019

Igoris, M., Artem’evich, M.G., Constantinovich, C.B., Grigorievich, K.R., and Shkolnik, N. (2010). Current interrupt device for batteries; 23 May 2007; Publication date: 6 December 2007.

Baginska, 2014, Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres, J. Power Sources, 269, 735, 10.1016/j.jpowsour.2014.07.048

Huang, 2017, Encapsulation of flame retardants for application in lithium-ion batteries, J. Power Sources, 338, 82, 10.1016/j.jpowsour.2016.11.026

Bian, 2020, Thermal runaway hazard characteristics and influencing factors of Li-ion battery packs under high-rate charge condition, Fire Mater., 44, 189, 10.1002/fam.2783

Feng, 2016, A 3D thermal runaway propagation model for a large format lithium ion battery module, Energy, 115, 194, 10.1016/j.energy.2016.08.094

Ping, 2017, Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions, Appl. Energy, 205, 1327, 10.1016/j.apenergy.2017.08.073

Zeng, 2020, Thermal safety study of Li-ion batteries under limited overcharge abuse based on coupled electrochemical-thermal model, Int. J. Energy Res., 44, 3607, 10.1002/er.5125

Yao, 2015, All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science, Chin. Phys. B, 25, 018802, 10.1088/1674-1056/25/1/018802

Hong, 2016, R&D vision and strategies on solid lithium batteries, Energy Stor. Sci. Technol., 5, 607

Agrawal, 2008, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D Appl. Phys., 41, 223001, 10.1088/0022-3727/41/22/223001

Zhao, 2020, Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review, Energy Storage Mater., 24, 75, 10.1016/j.ensm.2019.07.026

Perea, 2017, Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte, J. Power Sources, 359, 182, 10.1016/j.jpowsour.2017.05.061

Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 1, 10.1038/nenergy.2016.30

Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066