Questions and Answers Relating to Lithium-Ion Battery Safety Issues
Tóm tắt
Từ khóa
Tài liệu tham khảo
Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013
Zhang, 2019, Brief review of batteries for XEV applications, eTransportation, 2, 100032, 10.1016/j.etran.2019.100032
Wang, 2012, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038
Zhang, 2019, Causes analysis and countermeasures of automobile fire, Fire Sci. Technol., 38, 730
Evarts, 2018
Li, 2004, Statistical analysis of relationship between parameters of property of gasoline, In Chinese Internal Combustion Engine Engineering, 5, 28
Xu, 2020, Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry, J. Energy Storage, 31, 101670, 10.1016/j.est.2020.101670
Finegan, 2015, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nat. Commun., 6, 6924, 10.1038/ncomms7924
Finegan, 2017, Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits, Energy Environ. Sci., 10, 1377, 10.1039/C7EE00385D
Ping, 2015, Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test, J. Power Sources, 285, 80, 10.1016/j.jpowsour.2015.03.035
Feng, 2020, Mitigating thermal runaway of lithium-ion batteries, Joule, 4, 743, 10.1016/j.joule.2020.02.010
Feng, 2019, Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database, Appl. Energy, 246, 53, 10.1016/j.apenergy.2019.04.009
Ren, 2019, A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries, eTransportation, 2, 100034, 10.1016/j.etran.2019.100034
Han, 2019, A review on the key issues of the lithium ion battery degradation among the whole life cycle, eTransportation, 1, 100005, 10.1016/j.etran.2019.100005
Zhang, 2019, Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries, eTransportation, 1, 100004, 10.1016/j.etran.2019.100004
Li, 2019, Thermal runaway triggered by plated lithium on the anode after fast charging, ACS Appl. Mater. Interfaces, 11, 46839, 10.1021/acsami.9b16589
Zhu, 2018, A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources, 378, 153, 10.1016/j.jpowsour.2017.12.034
Zhu, 2016, Deformation and failure mechanisms of 18650 battery cells under axial compression, J. Power Sources, 336, 332, 10.1016/j.jpowsour.2016.10.064
Li, 2019, Data-driven safety envelope of lithium-ion batteries for electric vehicles, Joule, 3, 2703, 10.1016/j.joule.2019.07.026
Zhang, 2015
Tomaszewska, 2019, Lithium-ion battery fast charging: a review, eTransportation, 1, 100011, 10.1016/j.etran.2019.100011
Zavalis, 2012, Investigation of short-circuit scenarios in a lithium-ion battery cell, J. Electrochem. Soc., 159, A848, 10.1149/2.096206jes
Feng, 2018, Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode, Front. Energy Res., 6, 126, 10.3389/fenrg.2018.00126
Chu, 2017, Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model, Appl. Energy, 204, 1240, 10.1016/j.apenergy.2017.03.111
Feng, 2015, Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery, Appl. Energy, 154, 74, 10.1016/j.apenergy.2015.04.118
Tao, 2020, An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times, J. Clean. Prod., 242, 118539, 10.1016/j.jclepro.2019.118539
Feng, 2020, A reliable approach of differentiating discrete sampled-data for battery diagnosis, eTransportation, 3, 100051, 10.1016/j.etran.2020.100051
Tanim, 2020, Advanced diagnostics to evaluate heterogeneity in lithium-ion battery modules, eTransportation, 3, 100045, 10.1016/j.etran.2020.100045
Feng, 2016, Online internal short circuit detection for a large format lithium ion battery, Appl. Energy, 161, 168, 10.1016/j.apenergy.2015.10.019
Igoris, M., Artem’evich, M.G., Constantinovich, C.B., Grigorievich, K.R., and Shkolnik, N. (2010). Current interrupt device for batteries; 23 May 2007; Publication date: 6 December 2007.
Baginska, 2014, Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres, J. Power Sources, 269, 735, 10.1016/j.jpowsour.2014.07.048
Huang, 2017, Encapsulation of flame retardants for application in lithium-ion batteries, J. Power Sources, 338, 82, 10.1016/j.jpowsour.2016.11.026
Bian, 2020, Thermal runaway hazard characteristics and influencing factors of Li-ion battery packs under high-rate charge condition, Fire Mater., 44, 189, 10.1002/fam.2783
Feng, 2016, A 3D thermal runaway propagation model for a large format lithium ion battery module, Energy, 115, 194, 10.1016/j.energy.2016.08.094
Ping, 2017, Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions, Appl. Energy, 205, 1327, 10.1016/j.apenergy.2017.08.073
Zeng, 2020, Thermal safety study of Li-ion batteries under limited overcharge abuse based on coupled electrochemical-thermal model, Int. J. Energy Res., 44, 3607, 10.1002/er.5125
Yao, 2015, All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science, Chin. Phys. B, 25, 018802, 10.1088/1674-1056/25/1/018802
Hong, 2016, R&D vision and strategies on solid lithium batteries, Energy Stor. Sci. Technol., 5, 607
Agrawal, 2008, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D Appl. Phys., 41, 223001, 10.1088/0022-3727/41/22/223001
Zhao, 2020, Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review, Energy Storage Mater., 24, 75, 10.1016/j.ensm.2019.07.026
Perea, 2017, Safety of solid-state Li metal battery: solid polymer versus liquid electrolyte, J. Power Sources, 359, 182, 10.1016/j.jpowsour.2017.05.061
Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 1, 10.1038/nenergy.2016.30