Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics

Roberto Peverati1, Donald G. Truhlar1
1Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA

Tóm tắt

Kohn–Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange–correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading—as a long-range goal—to a functional with good accuracy for all problems, i.e. a universal functional. To guide our path towards that goal and to measure our progress, we have developed—building on earlier work of our group—a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes, such as atomization, complexation, proton addition and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For this paper, we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test two wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore, the results provide a status report on the quest for a universal functional.

Từ khóa


Tài liệu tham khảo

10.1103/RevModPhys.71.1253

10.1103/PhysRev.140.A1133

10.1088/0022-3719/5/13/012

10.1063/1.464304

10.1021/jp047428v

10.1103/RevModPhys.80.3

10.1021/jp049253v

10.1063/1.2148954

10.1021/jp980259s

Engel E, 2011, Density functional theory, theoretical and mathematical physics, 109, 10.1007/978-3-642-14090-7_4

10.1063/1.1457432

10.1016/j.theochem.2009.09.006

Dirac PAM, 1930, Math. Proc. Cambridge Phil. Soc., 376

10.1103/PhysRev.81.385

10.1007/BF03159758

10.1103/PhysRev.46.1002

10.1139/p80-159

Perdew JP, 1991, Electronic structure of solids '91, 11

10.1021/bk-2007-0958.ch002

10.1103/PhysRevB.81.085123

Kohn W, 1983, Theory of homogeneous electron gas, 79, 10.1007/978-1-4899-0415-7_2

Perdew JP, 2001, AIP Conf. Proc., 1

Perdew JP, 1986, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation, Phys. Rev. B, 33, 1989

10.1103/PhysRevB.28.1809

10.1063/1.450025

10.1103/PhysRevA.38.3098

10.1103/PhysRevLett.77.3865

10.1080/00268970010018431

10.1103/PhysRevB.37.785

10.1063/1.2912068

10.1021/jz200616w

10.1103/PhysRevLett.101.239702

10.1103/PhysRevLett.100.136406

10.1103/PhysRevB.43.6376

10.1103/PhysRevB.45.11328

10.1103/PhysRevB.31.6779

10.1103/PhysRev.165.18

10.1063/1.3698285

Perdew JP, 2003, A primer in density functional theory, 1

10.1016/S0166-1280(99)00235-3

10.1021/ct3002656

10.1063/1.1904565

10.1063/1.464913

10.1021/j100096a001

10.1063/1.3663871

10.1016/S0009-2614(97)00758-6

10.1063/1.1383587

10.1002/qua.560560417

10.1016/j.cplett.2008.07.103

10.1021/ct300006h

10.1103/PhysRevLett.94.043002

10.1063/1.2409292

10.1016/j.cplett.2004.06.011

10.1063/1.1564060

10.1063/1.2404663

10.1039/c2cp42576a

10.1103/PhysRevB.80.115205

10.1088/0953-8984/20/6/064201

10.1039/B812838C

10.1021/jz201525m

10.1021/jz9002422

10.1063/1.2126975

10.1021/ct0502763

10.1063/1.2370993

Zhao Y, 2008, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 120, 215, 10.1007/s00214-007-0310-x

10.1021/jp066479k

10.1021/ct800246v

10.1021/jz201170d

10.1063/1.2834918

10.1039/c2cp42025b

10.1039/b416937a

10.1103/PhysRevLett.92.246401

10.1063/1.3152221

10.1103/PhysRevB.82.081101

10.1103/PhysRevA.81.024502

10.1088/0953-8984/22/2/022201

10.1103/PhysRevB.83.195131

10.1063/1.3521275

10.1021/ct100466k

10.1021/ct300081y

10.1021/jp103850h

10.1063/1.3382344

10.1002/cphc.201100521

10.1002/jcc.21759

10.1021/ct2005616

10.1021/jp904369h

10.1039/c0cp02984j

10.1021/cr1000173

Zhao Y, 2012, MN-GFM, v. 6.4: Minnesota Gaussian Functional Module

Frisch MJ, 2009, Gaussian 09, revision C.01

10.1039/B517914A

10.1002/jcc.540141112

10.1016/j.cpc.2010.04.018

10.1039/c1cp20834a

10.1021/jp050536c

10.1021/jp021590l

10.1021/jp3079106

10.1021/jp0630626

10.1021/jp052021r

10.1021/jp045141s

10.1021/ct800568m

10.1021/ct049851d

10.1103/PhysRevA.47.3649

10.1103/PhysRevB.69.075102

10.1063/1.2973541

10.1021/ct900298e

10.1021/ct9005129

10.1021/ct100119e

10.1039/c1cp22144b

10.1021/ct200721d

10.1021/ct300326f

10.1063/1.3689445

10.1039/c2cp41295k

10.1063/1.4769078

10.1039/b907148b

10.1021/ct1006604

10.1039/c1cp21635j

10.1016/j.theochem.2010.02.030

Rayne S, 2010, Performance of the major semiempirical, ab initio, and density functional theory methods in evaluating isomerization enthalpies for linear to branched heptanes, Nat. Precedings.

10.1063/1.481336

10.1021/jp0221993

10.1021/jp045847m

10.1063/1.2348881

10.1063/1.2755751

10.1063/1.453520

10.1021/jp0504468

10.1021/jp0539223

Karton A, 2007, Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics, J. Phys. Chem. A, 112, 12868, 10.1021/jp801805p

10.1016/S0009-2614(98)00862-8

10.1039/b508541a

10.1039/c003951a

10.1063/1.462569

10.1063/1.443164

10.1016/S0009-2614(89)87395-6

10.1063/1.3054300

10.1063/1.2907741

10.1002/jcc.20495

10.1063/1.467146

10.1063/1.469590

10.1063/1.1337864

10.1063/1.2647019

10.1016/0003-4916(74)90333-9

10.1103/PhysRevA.33.3742

10.1103/PhysRevA.39.6016

10.1021/ol062318n

Hehre WJ, 1986, Ab initio molecular orbital theory

10.1021/jp0469517

10.1021/jp000408i

10.1063/1.1520138

10.1063/1.456153

10.1063/1.2085170

10.1063/1.3076922

10.1007/BF00934406

10.1103/PhysRevB.79.085104

10.1063/1.3524336

10.1103/PhysRevB.85.014111

10.1063/1.1658600

10.1002/jcc.20529

10.1021/jp0212895

10.1016/S0009-2614(97)00651-9

10.1103/PhysRevB.33.8822

10.1063/1.2061227

10.1063/1.476438

10.1021/jp049908s

10.1063/1.1774975

10.1063/1.1347371

10.1103/RevModPhys.23.69

10.1103/PhysRev.46.618

10.1021/jp048147q

10.1021/jp000497z

10.1063/1.475428

10.1021/jp052436c

10.1063/1.478522

10.1103/PhysRevLett.80.890

10.1103/PhysRevLett.103.026403

10.1103/PhysRevB.59.7413

10.1103/PhysRevLett.91.146401

10.1063/1.1626543

10.1063/1.476577

10.1063/1.1476309

10.1039/b810189b

10.1063/1.451353

10.1063/1.477267

10.1007/s00214-001-0300-3

10.1063/1.2790017

10.1063/1.3628522

10.1063/1.4704370

10.1063/1.4742312

10.1103/PhysRevLett.51.1884

10.1016/S0009-2614(01)00616-9

10.1088/0953-8984/24/14/145504

10.1002/pssb.201046327

10.1038/nphys1370

10.1103/PhysRevB.68.235108

10.1016/S0378-4754(02)00247-1

10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X

10.1021/ct2006192

10.1063/1.3607312

10.1103/PhysRevA.39.3761

10.1021/ar700111a