Quenching of Flame Propagation Through Endothermic Reaction
Tóm tắt
The propagation of a premixed laminar flame supported by an exothermic chemical reaction under adiabatic conditions but subject to inhibition through a parallel endothermic chemical process is considered. The temperature dependence of the reaction rates is assumed to have a generalised Arrhenius type form with an ignition temperature, below which there is no reaction. The heat loss through the endothermic reaction, represented by the dimensionless parameter α, has a strong quenching effect on wave initiation and propagation. The temperature profile can have a front or a pulse structure depending on the relative value of the ignition temperatures and on the value of the parameters α and β, the latter represents the rate at which inhibitor is consumed relative to the consumption of fuel. The wave speed-cooling parameter (α) curves are determined for various values of the other parameters. These curves can have three different shapes: monotone decreasing, ⊃-shaped or S-shaped, with the possibility of having one, two or three different flame velocities for the same value of the cooling parameter α.
Tài liệu tham khảo
citation_journal_title=Nonlinear Anal.; citation_title=Qualitative properties of a nonlinear system for laminar flames without ignition temperature; citation_author=M. Marion; citation_volume=9; citation_publication_date=1985; citation_pages=1269-1292; citation_id=CR1
citation_journal_title=Combustion and Flame; citation_title=The quenching of deflagration waves; citation_author=J.D. Buckmaster; citation_volume=26; citation_publication_date=1976; citation_pages=151-162; citation_id=CR2
citation_journal_title=SIAM J. Math. Anal.; citation_title=Nonadiabatic plane laminar flames and their singular limits; citation_author=V. Giovangigli; citation_volume=21; citation_publication_date=1990; citation_pages=1305-1325; citation_id=CR3
citation_journal_title=Combust. Theory Modelling; citation_title=Stability of freely propagating flames revisited; citation_author=D.G. Lasseigne, T.L. Jackson, L. Jameson; citation_volume=3; citation_publication_date=1999; citation_pages=591-611; citation_id=CR4
P.L. Simon, S. Kalliadasis, J.H. Merkin and S.K. Scott, Quenching of flame propagation with heat loss (submitted for publication).
citation_journal_title=Proc. Roy. Soc. London Ser. A; citation_title=Combustion waves for gases (Le = 1) and solids (Le #x2192; ∞); citation_author=R.O. Weber, G.N. Mercer, H.S. Sidhu, B.F. Gray; citation_volume=453; citation_publication_date=1997; citation_pages=1105-1118; citation_id=CR6
F.A. Williams, Combustion Theory (Addison-Wesley, 1985).
citation_journal_title=Proc. Roy. Soc. London Ser. A; citation_title=Linear stability analysis of laminar premixed spray flames; citation_author=J.B. Greenberg, A.C. McIntosh, J. Brindley; citation_volume=457; citation_publication_date=2001; citation_pages=1-31; citation_id=CR8
citation_journal_title=Combust. Flame; citation_title=A flame inhibition theory by inert dust and spray; citation_author=T. Mitani; citation_volume=43; citation_publication_date=1981; citation_pages=243-253; citation_id=CR9
citation_journal_title=Combust. Flame; citation_title=Extinction phenomena of premixed flames with alkali metal compounds; citation_author=T. Mitani, T. Niioka; citation_volume=55; citation_publication_date=1984; citation_pages=13-21; citation_id=CR10
B.F. Gray, S. Kalliadasis, A. Lazarovici, C. Macaskill, J.H. Merkin and S.K. Scott, The suppression of an exothermic branched-chain flame through endothermic reaction and radical scavenging (submitted for publication).
A. Lazarovici, S. Kalliadasis, J.H. Merkin and S.K. Scott, Flame quenching through endothermmic reaction (submitted for publication).
J.D. Buckmaster and G.S.S. Ludford, Theory of Laminar Flames (Cambridge University Press, 1982).
J. Warnatz, U. Maas and R.W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, 2001).
Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich and G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, 1985).