Quaternions as a solution to determining the angular kinematics of human movement

BMC Biomedical Engineering - Tập 2 Số 1 - 2020
John H. Challis1
1Biomechanics Laboratory, Pennsylvania State University, University Park, PA, 16802, USA

Tóm tắt

AbstractThe three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated.The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion, q = (q0, q1, q2, q3), can be considered a rotation (Ω = 2 cos−1(q0)), about an axis defined by a unit direction vector $$ \left({q}_1/\sin \left(\frac{\Omega}{2}\right),{q}_2/\sin \left(\frac{\Omega}{2}\right),{q}_3/\sin \left(\frac{\Omega}{2}\right)\right) $$q1/sinΩ2q2/sinΩ2q3/sinΩ2. The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman’s paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed.The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.

Từ khóa


Tài liệu tham khảo

Alsultan F, Cescon C, De Nunzio AM, Barbero M, Heneghan NR, Rushton A, et al. Variability of the helical axis during active cervical movements in people with chronic neck pain. Clin Biomech. 2019;62:50–7.

Blankevoort L, Huiskes R, de Lange A. Helical axes of passive knee joint motions. J Biomech. 1990;23(12):1219–29.

Cayley A. On the motion of rotation of a solid body. Camb Math J. 1843;3(1843):224–32.

Challis JH. A procedure for determining rigid body transformation parameters. J Biomech. 1995;28(5):733–7.

Chasles M. Note sur les propriétés générales du système de deux corps semblables entr'eux. Bull Des Sci Math Astronomiques Physiques Chemiques. 1830;14:321–6.

Clerk-Maxwell J. Remarks on mathematical classification of physical quantities. Proc Lond Math Soc. 1869;s1–3(1):224–33.

Codman E. The shoulder: rupture of the supraspinatus tendon and other lesions in or about the subacromial Bursa. Boston: T. Todd Co.; 1934.

Golub GH, Reinsch C. Singular value decomposition and least squares solutions. In: Wilkinson JH, Reinsch C, editors. Handbook for Automatic Computations Vol II: Linear Algebra. Heidelberg: Springer; 1971. p. 131–54.

Horn BKP. Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am Opt Image Sci Vis. 1987;4(4):629–42.

Kanatini K. Analysis of 3-D rotation fitting. IEEE Trans Pattern Anal Mach Intell. 1994;16(5):543–9.

Kibsgard TJ, Roise O, Stuge B, Rohrl SM. Precision and accuracy measurement of radiostereometric analysis applied to movement of the sacroiliac joint. Clin Orthop Relat Res. 2012;470(11):3187–94.

Langton SG. Euler on rigid bodies. In: Bradley RE, Sandifer CE, editors. Leonhard Euler: life, work and legacy. 1st ed. New York: Elsevier Science; 2007. p. 195–211.

Markley FL, Cheng Y, Crassidis JL, Oshman Y. Averaging quaternions. J Guid Control Dyn. 2007;30(4):1193–7.

McCarthy JM. An Introduction To Theoretical Kinematics. Cambridge: Mass.: MIT Press; 1990.

Moakher M. Means and averaging in the group of rotations. SIAM J Matrix Anal Appl. 2002;24(1):1–16.

Rodrigues O. Des lois géometriques qui regissent les déplacements d' un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire. J Math Pures Appl. 1840;5:380–440.

Shannon CE. Communication in the presence of noise. Proc Inst Radio Eng. 1949;37(1):10–21.

Shepperd SW. Quaternion from rotation matrix. J Guid Control. 1978;1(3):223–4.

Shiflett GR, Laub AJ. The analysis of rigid body motion from measured data. J Dyn Syst Meas Control. 1995;117(4):578–84.

Shoemake K. Animating rotation with quaternion curves. Comput Graph. 1985;19(3):245–54.

Shuster MD. Maximum likelihood estimation of spacecraft attitude. J Astronautical Sci. 1989;37(1):79–86.

Shuster MD, Oh SD. Three-axis attitude determination from vector observations. J Guid Control. 1981;4(1):70–7.

Thompson SP. The life of William Thomson, Baron Kelvin of Largs. London: Macmillan; 1910.

Wahba G. Problem 65-1: a least squares estimate of spacecraft attitude. SIAM Rev. 1965;7(3):409.

Winter DA. The biomechanics and motor control of human gait: Normal, elderly, and pathological. Walterloo, Ontario: University of Waterloo Press; 1991.

Wittenburg J. Dynamics of Systems of Rigid Bodies. Stuttgart: B.G. Teubner; 1977.

Woltring HJ, Huiskes R, de Lange A, Veldpaus FE. Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech. 1985;18(5):379–89.

Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28(10):1257–61.