Quaternion lattices and quaternion fields

Peter Schmid1
1Mathematisches Institut der Universität Tübingen, Tübingen, Germany

Tóm tắt

Let $$Q_8$$ be the quaternion group of order 8 and $${\chi }$$ its faithful irreducible character. Then $${\chi }$$ can be realized over certain imaginary quadratic number fields $$K={\mathbb Q}\bigl (\sqrt{-N}\bigr )$$ but not over their rings of integers (Feit, Serre); here N is a positive square-free integer. We show that this happens precisely when $${\mathbb Q}\bigl (\sqrt{N}\bigr )$$ but not $${\mathbb Q}\bigl (\sqrt{2}, \sqrt{N}\bigr )$$ can be embedded into a $$Q_8$$ -field over the rationals (Galois with group $$Q_8$$ ) and N is not a sum of two integer squares. In particular, we get that $${\chi }$$ cannot be integrally realized if N is (properly) divisible by some prime $$q\equiv 7\,({\textrm{mod}\,}8)$$ .

Từ khóa


Tài liệu tham khảo

Cliff, G., Ritter, J., Weiss, A.: Group representations and integrality. J. Reine Angew. Math. 426, 192–202 (1992)

Curtis, C.W., Reiner, I.: Methods of Representation Theory. Vol. I. With Applications to Finite Groups and Orders. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1981)

Eichler, M.: Über die Idealklassenzahl total definiter Quaternionenalgebren. Math. Z. 43, 102–109 (1938)

Fröhlich, A.: Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields. Contemporary Mathematics, 24. American Mathematical Society. Providence, RI (1983)

Gauss, C.F.: Disquisitiones Arithmeticae. Fleischer, Leipzig (1801)

Gross, B.H.: Group representations and lattices. J. Amer. Math. Soc. 3, 929–960 (1990)

Lam, T.Y.: The Algebraic Theory of Quadratic Forms. Mathematics Lecture Note Series. W. A. Benjamin, Inc., Reading, Mass. (1973)

Nebe, G.: Finite quaternionic matrix groups. Represent. Theory 2, 106–223 (1998)

Schmid, P.: Quaternion extensions with restricted ramification. Acta Arith. 165, 123–139 (2014)

Schur, I.: Über die Darstellungen der symmetrischen und alternierenden Gruppen durch gebrochene lineare Substitutionen. J. Math. 132, 155–250 (1911)

Serre, J.-P.: A Course in Arithmetic. Springer, Berlin (1973)

Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)

Serre, J.-P.: Three letter to Walter Feit on group representations and quaternions. J. Algebra 319, 549–557 (2008)

Tiep, P.H.: Basic spin representations of \(2S_n\) and \(2A_n\) as globally irreducible representations. Arch. Math. (Basel) 64, 103–112 (1995)

Tiep, P.H.: Globally irreducible representations of finite groups and integral lattices. Geom. Dedicata 64, 85–123 (1997)

Witt, E.: Konstruktion von galoisschen Körpern der Charakteristik \(\, p\) zu vorgegebener Gruppe der Ordnung \(p^f\). J. Reine Angew. Math. 174, 237–245 (1936)

Zagier, D.B.: Zetafunktionen und quadratische Körper. Springer, Berlin (1981)