Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các chế độ quasinormal của hố đen Reissner-Nordström-de Sitter ma quái
Tóm tắt
Trong bài báo này, chúng tôi nghiên cứu một số đặc điểm của hố đen Reissner-Nordström-de Sitter (RN-dS) ma quái. Các đặc điểm kỳ lạ của trường ma quái khiến loại hố đen này trở nên khác biệt đáng kể so với các đối tác của chúng. Chúng tôi chỉ có thể tìm thấy tối đa hai chân trời trong không gian-thời gian này, tức là chân trời sự kiện và chân trời vũ trụ. Đối với tham số điện tích của hố đen, chúng tôi nhận thấy rằng nó không bị giới hạn từ phía dưới. Chúng tôi tính toán tần số của các chế độ quasinormal (QNMs) cho sự nhiễu loạn trường vô hướng không có khối lượng trong không gian-thời gian của hố đen này, và một số tính chất liên quan đến tham số điện tích lớn được tiết lộ.
Từ khóa
#hố đen #Reissner-Nordström-de Sitter #trường ma quái #chế độ quasinormal #tần sốTài liệu tham khảo
H.A. Buchdahl, Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 1 (1970)
R.R. Caldwell, A Phantom menace? Phys. Lett. B 545, 23–29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3. arXiv:astro-ph/9908168
Y.-F. Cai, E.N. Saridakis, M.R. Setare, J.-Q. Xia, Quintom Cosmology: Theoretical implications and observations. Phys. Rept. 493, 1–60 (2010). https://doi.org/10.1016/j.physrep.2010.04.001. arXiv:0909.2776
S. Hannestad, Dark energy and dark matter from cosmological observations. Int. J. Mod. Phys. A 21, 1938–1949 (2006). https://doi.org/10.1142/S0217751X06032885. arXiv:astro-ph/0509320
J. Dunkley, WMAP collaboration, et al., Five-year Wilkinson microwave anisotropy probe (WMAP) observations: likelihoods and parameters from the WMAP data. Astrophys. J. Suppl. 180, 306–329 (2009). https://doi.org/10.1088/0067-0049/180/2/306. arXIv:0803.0586
G. Clement, J.C. Fabris, M.E. Rodrigues, Phantom black holes in Einstein-Maxwell-Dilaton theory. Phys. Rev. D 79, 064021 (2009). https://doi.org/10.1103/PhysRevD.79.064021. arXiv:0901.4543
T. Okuda, T. Takayanagi, Ghost d-branes. J. High Energy Phys. 2006, 062 (2006). https://doi.org/10.1088/1126-6708/2006/03/062
F. Piazza, S. Tsujikawa, Dilatonic ghost condensate as dark energy. J. Cosmol. Astroparticle Phys. 2004, 004 (2004). https://doi.org/10.1088/1475-7516/2004/07/004
S. Nojiri, S.D. Odintsov, Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 562, 147–152 (2003). https://doi.org/10.1016/S0370-2693(03)00594-X. arXiv:hep-th/0303117
D.F. Jardim, M.E. Rodrigues, M.J.S. Houndjo, Thermodynamics of phantom Reissner-Nordstrom-AdS black hole. Eur. Phys. J. Plus 127, 123 (2012). https://doi.org/10.1140/epjp/i2012-12123-x. arXiv:1202.2830
H. Quevedo, M.N. Quevedo, A. Sanchez, Geometrothermodynamics of phantom AdS black holes. Eur. Phys. J. C 76, 110 (2016). https://doi.org/10.1140/epjc/s10052-016-3949-4. arXiv:1601.07120
J.-X. Mo, S.-Q. Lan, Phase transition and heat engine efficiency of phantom AdS black holes. Eur. Phys. J. C 78, 666 (2018). https://doi.org/10.1140/epjc/s10052-018-6153-x. arXiv:1803.02491
E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009). https://doi.org/10.1088/0264-9381/26/16/163001. arXiv:0905.2975
R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). https://doi.org/10.1103/RevModPhys.83.793. arXiv:1102.4014
B.P. Abbott, LIGO Scientific, Virgo collaboration, et al., Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837
LIGO Scientific, Virgo collaboration, B. P. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832
H.-P. Nollert, TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars. Class. Quant. Grav. 16, R159–R216 (1999). https://doi.org/10.1088/0264-9381/16/12/201
O. Dreyer, B.J. Kelly, B. Krishnan, L.S. Finn, D. Garrison, R. Lopez-Aleman, Black hole spectroscopy: testing general relativity through gravitational wave observations. Class. Quant. Grav. 21, 787–804 (2004). https://doi.org/10.1088/0264-9381/21/4/003. arXiv:gr-qc/0309007
E. Berti, V. Cardoso, C.M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030 (2006). https://doi.org/10.1103/PhysRevD.73.064030
C. Shi, J. Bao, H. Wang, J.-D. Zhang, Y. Hu, A. Sesana et al., Science with the TianQin observatory: preliminary results on testing the no-hair theorem with ringdown signals. Phys. Rev. D 100, 044036 (2019). https://doi.org/10.1103/PhysRevD.100.044036. arXiv:1902.08922
M. Isi, M. Giesler, W.M. Farr, M.A. Scheel, S.A. Teukolsky, Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 123, 111102 (2019). https://doi.org/10.1103/PhysRevLett.123.111102. arXiv:1905.00869
H. Liu, C. Zhang, Y. Gong, B. Wang, A. Wang, Exploring nonsingular black holes in gravitational perturbations. Phys. Rev. D 102, 124011 (2020). https://doi.org/10.1103/PhysRevD.102.124011. arXiv:2002.06360
J. Bao, C. Shi, H. Wang, J.-D. Zhang, Y. Hu, J. Mei et al., Constraining modified gravity with ringdown signals: an explicit example. Phys. Rev. D 100, 084024 (2019). https://doi.org/10.1103/PhysRevD.100.084024. arXiv:1905.11674
P.A. Cano, K. Fransen, T. Hertog, S. Maenaut, Gravitational ringing of rotating black holes in higher-derivative gravity. Phys. Rev. D 105, 024064 (2022). https://doi.org/10.1103/PhysRevD.105.024064. arXiv:2110.11378
J.L. Blázquez-Salcedo, C.F.B. Macedo, V. Cardoso, V. Ferrari, L. Gualtieri, F.S. Khoo et al., Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission. Phys. Rev. D 94, 104024 (2016). https://doi.org/10.1103/PhysRevD.94.104024. arXiv:1609.01286
G. Franciolini, L. Hui, R. Penco, L. Santoni, E. Trincherini, Effective field theory of Black Hole Quasinormal modes in scalar-tensor theories. JHEP 02, 127 (2019). https://doi.org/10.1007/JHEP02(2019)127. arXiv:1810.07706
A. Aragón, P.A. González, E. Papantonopoulos, Y. Vásquez, Quasinormal modes and their anomalous behavior for black holes in \(f(R)\) gravity. Eur. Phys. J. C 81, 407 (2021). https://doi.org/10.1140/epjc/s10052-021-09193-7. arXiv:2005.11179
H. Liu, P. Liu, Y. Liu, B. Wang, J.-P. Wu, Echoes from phantom wormholes. Phys. Rev. D 103, 024006 (2021). https://doi.org/10.1103/PhysRevD.103.024006. arXiv:2007.09078
T. Karakasis, E. Papantonopoulos, C. Vlachos, f(R) gravity wormholes sourced by a phantom scalar field. Phys. Rev. D 105, 024006 (2022). https://doi.org/10.1103/PhysRevD.105.024006. arXiv:2107.09713
V. Cardoso, J.A.L. Costa, K. Destounis, P. Hintz, A. Jansen, Quasinormal modes and strong cosmic censorship. Phys. Rev. Lett. 120, 031103 (2018). https://doi.org/10.1103/PhysRevLett.120.031103. arXiv:1711.10502
H. Liu, Z. Tang, K. Destounis, B. Wang, E. Papantonopoulos, H. Zhang, Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime. JHEP 03, 187 (2019). https://doi.org/10.1007/JHEP03(2019)187. arXiv:1902.01865
S. Hod, Strong cosmic censorship in charged black-hole spacetimes: as strong as ever. Nucl. Phys. B 941, 636–645 (2019). https://doi.org/10.1016/j.nuclphysb.2019.03.003. arXiv:1801.07261
Y. Mo, Y. Tian, B. Wang, H. Zhang, Z. Zhong, Strong cosmic censorship for the massless charged scalar field in the Reissner-Nordstrom-de Sitter spacetime. Phys. Rev. D 98, 124025 (2018). https://doi.org/10.1103/PhysRevD.98.124025. arXiv:1808.03635
O.J.C. Dias, F.C. Eperon, H.S. Reall, J.E. Santos, Strong cosmic censorship in de Sitter space. Phys. Rev. D 97, 104060 (2018). https://doi.org/10.1103/PhysRevD.97.104060. arXiv:1801.09694
S. Hod, Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes. Phys. Lett. B 780, 221–226 (2018). https://doi.org/10.1016/j.physletb.2018.03.020. arXiv:1803.05443
B. Gwak, Strong cosmic censorship under Quasinormal modes of non-minimally coupled massive scalar field. Eur. Phys. J. C 79, 767 (2019). https://doi.org/10.1140/epjc/s10052-019-7283-5. arXiv:1812.04923
H. Guo, H. Liu, X.-M. Kuang, B. Wang, Strong cosmic censorship in charged de Sitter spacetime with scalar field non-minimally coupled to curvature. Eur. Phys. J. C 79, 891 (2019). https://doi.org/10.1140/epjc/s10052-019-7416-x. arXiv:1905.09461
S. Sarkar, M. Rahman, S. Chakraborty, Perturbing the perturbed: Stability of quasi-normal modes in presence of a positive cosmological constant (2022). arXiv:2304.06829
R.A. Konoplya, A. Zhidenko, Nonoscillatory gravitational quasinormal modes and telling tails for Schwarzschild-de Sitter black holes. Phys. Rev. D 106, 124004 (2022). https://doi.org/10.1103/PhysRevD.106.124004. arXiv:2209.12058
R.A. Konoplya, A. Zhidenko, How general is the strong cosmic censorship bound for quasinormal modes? JCAP 11, 028 (2022). https://doi.org/10.1088/1475-7516/2022/11/028. arXiv:2210.04314
A. Zhidenko, Quasinormal modes of Schwarzschild de Sitter black holes. Class. Quant. Grav. 21, 273–280 (2004). https://doi.org/10.1088/0264-9381/21/1/019. arXiv:gr-qc/0307012
H.T. Cho, A.S. Cornell, J. Doukas, T.R. Huang, W. Naylor, A new approach to black hole quasinormal modes: a review of the asymptotic iteration method. Adv. Math. Phys. 2012, 281705 (2012). https://doi.org/10.1155/2012/281705. arXiv:1111.5024
R.A. Konoplya, A. Zhidenko, A.F. Zinhailo, Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav. 36, 155002 (2019). https://doi.org/10.1088/1361-6382/ab2e25. arXiv:1904.10333
J. Matyjasek, M. Opala, Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 96, 024011 (2017). https://doi.org/10.1103/PhysRevD.96.024011. arXiv:1704.00361
V. Cardoso, A.S. Miranda, E. Berti, H. Witek, V.T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 79, 064016 (2009). https://doi.org/10.1103/PhysRevD.79.064016. arXiv:0812.1806
R.A. Konoplya, Further clarification on quasinormal modes/circular null geodesics correspondence. Phys. Lett. B 838, 137674 (2023). https://doi.org/10.1016/j.physletb.2023.137674. arXiv:2210.08373
R.A. Konoplya, Z. Stuchlík, Are eikonal quasinormal modes linked to the unstable circular null geodesics? Phys. Lett. B 771, 597–602 (2017). https://doi.org/10.1016/j.physletb.2017.06.015. arXiv:1705.05928
A. Jansen, Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes. Eur. Phys. J. Plus 132, 546 (2017). https://doi.org/10.1140/epjp/i2017-11825-9. arXiv:1709.09178
A. Lopez-Ortega, On the quasinormal modes of the de Sitter spacetime. Gen. Rel. Grav. 44, 2387–2400 (2012). https://doi.org/10.1007/s10714-012-1398-4. arXiv:1207.6791
O.J.C. Dias, H.S. Reall, J.E. Santos, Strong cosmic censorship: taking the rough with the smooth. JHEP 10, 001 (2018). https://doi.org/10.1007/JHEP10(2018)001. arXiv:1808.02895
O.J.C. Dias, H.S. Reall, J.E. Santos, Strong cosmic censorship for charged de Sitter black holes with a charged scalar field. Class. Quant. Grav. 36, 045005 (2019). https://doi.org/10.1088/1361-6382/aafcf2. arXiv:1808.04832
