Quasilinear asymptotically periodic Schrödinger equations with critical growth

Elves A. B. Silva1, Gilberto Vieira2
1Universidade de Brasilia
2Unidade Acadêmica de Ciências Exatas e da Natureza, Centro de Formação de Professores, Universidade Federal de Campina Grande, Cajazeiras, Brasil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alves C.O., do Ó J.M., Miyagaki O.H.: On nonlinear perturbations of a periodic in $${\mathbb{R}^2}$$ involving critical growth. Nonlinear Anal. 56, 781–791 (2004)

Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

Berestycki H., Lions P.L.: Nonlinear scalar field equations, I: Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1982)

Berestycki H., Gallouët T., Kavian O.: Equations de Champs scailares euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math. 297, 307–310 (1983)

Berestycki H., Capuzzo-Dolceta I., Nirenberg L.: Variational methods for indefinite superlinear homogeneous elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 2, 533–572 (1995)

Brézis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

Colin M., Jeanjean L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

Coti Zelati V., Rabinowitz P.H.: Homoclinic type solutions for a semilinear elliptic PDE on $${\mathbb {R}^N}$$ . Commun. Pure Appl. Math. 45, 1217–1269 (1992)

do Ó, J.M., Miyagaki, O.H., Soares, S.H.M.: Soliton solutions for quasilinear Schrödinger equations with critical growth (preprint)

do Ó, J.M., Severo, U.B.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. PDEs. (2009). doi: 10.1007/s00526-009-0286-6

do Ó J.M., Severo U.B.: Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun. Pure Appl. Anal. 8(2), 621–644 (2009)

Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer–Verlag, Berlin (1983)

Jabri, Y.: The Mountain Pass Theorem: variants, generalizations and some applications. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2003)

Lins H.F., Silva E.A.B.: Quasilinear asymptotically periodic elliptic equations with critical growth. Nonlinear Anal. 71, 2890–2905 (2009)

Liu J., Wang Z.-Q.: Soliton solutions for quasilinear Schrödinger equations I. Proc. Amer. Math. Soc. 131(2), 441–448 (2002)

Liu J., Wang Y.-Q., Wang Z.-Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

Liu J., Wang Y.-Q., Wang Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari Method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

Moameni A.: Existence of soliton solutions for a quasilinear Schrödinger equation involving critical growth in $${\mathbb {R}^N}$$ . J. Differ. Equ. 229, 570–587 (2006)

Moameni A.: On a class of periodic quasilinear Schrödinger equations involving critical growth in $${\mathbb {R}^2}$$ . J. Math. Anal. Appl. 334, 775–786 (2007)

Poppenberg M., Schmitt K., Wang Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. PDEs. 14, 329–344 (2002)

Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Anal. (2009). doi: 10.1016/j.na.2009.11.037

Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, Berlin, Heidelberg (1996)

Willem M.: Minimax Theorems. Birkhäuser, Basel (1996)