Quasiconformal extension of biholomorphic mappings in several complex variables

Journal d'Analyse Mathematique - Tập 96 - Trang 269-282 - 2005
Hidetaka Hamada1, Gabriela Kohr2
1Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan
2Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Tóm tắt

Letf(z, t) be a subordination chain fort ∈ [0, α], α>0, on the Euclidean unit ballB inC n. Assume thatf(z) =f(z, 0) is quasiconformal. In this paper, we give a sufficient condition forf to be extendible to a quasiconformal homeomorphism on a neighbourhood of $$\bar B$$ . We also show that, under this condition,f can be extended to a quasiconformal homeomorphism of $$\overline {R^{2n} } $$ onto itself and give some applications.

Tài liệu tham khảo

[Be1] J. Becker,Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math.255 (1972), 23–43. [Be2] J. Becker,Conformal mappings with quasiconformal extensions, inAspects of Contemporary Mathematics (D. Brannan and J. Clunie, eds.), Academic Press, London-New York, 1980, pp. 37–77. [BePo] J. Becker and C. Pommerenke,Über die quasikonforme Fortsetzung schlichter Funktionen, Math. Z.161 (1978), 69–80. [Br] A. A. Brodskii,Quasiconformal extension of biholomorphic mappings inTheory of Mappings and Approximation of Functions, Naukova Dunka, Kiew, 1983, pp. 30–34. [FaKrZy] M. Fait, J. Krzyż and J. Zygmunt,Explicit quasiconformal extensions for some classes of univalent functions, Comment. Math. Helv.51 (1976), 279–285. [GrHaKo] I. Graham, H. Hamada and G. Kohr,Parametric representation of univalent mappings in several complex variables, Canad. J. Math.54 (2002), 324–351. [GrKo] I. Graham and G. Kohr,Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003. [HaKo] H. Hamada and G. Kohr,Loewner chains and quasiconformal extension of holomorphic mappings, Ann. Polon. Math.81 (2003), 85–100. [Kr] J. Krzyż,Convolution and quasiconformal extension, Comment. Math. Helv.51 (1976), 99–104. [Pf1] J. A. Pfaltzgraff,Subordination chains and univalence of holomorphic mappings in C n, Math. Ann.210 (1974), 55–68. [Pf2] J. A. Pfaltzgraff,Subordination chains and quasiconformal extension of holomorphic maps in C n, Ann. Acad. Sci. Fenn. Ser. A I Math.1 (1975), 13–25. [ReMa] F. Ren and J. Ma,Quasiconformal extension of biholomorphic mappings of several complex variables, J. Fudan Univ. Nat. Sci.34 (1995), 545–556. [RoSu] K. Roper and T. J. Suffridge,Convexity properties of holomorphic mappings in C n, Trans. Amer. Math. Soc.351 (1999), 1803–1833. [Sa] S. Saks,Theory of the Integral, English translation by L. C. Young; with two additional notes by Stefan Banach.—2nd rev. ed., G. E. Stechert, New York, 1937. [Su] T. J. Suffridge,Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, inComplex Analysis, Lecture Notes in Math.599, Springer-Verlag, Berlin, 1976, pp. 146–159. [Vä] J. Väisälä,Lectures on n-dimensional Quasiconformal Mappings, Lecture Notes in Math.229, Springer-Verlag, Berlin-New York, 1971.