Quasiabelian landscapes of the traveling salesman problem are elementary

Discrete Optimization - Tập 6 - Trang 288-291 - 2009
Andrew Solomon1, Bruce W. Colletti2
1University of Technology, Sydney, P.O. Box 123 Broadway, NSW 2007, Australia
2Florida Institute of Technology University College, National Capital Region Graduate Center, 4875 Eisenhower Ave, Suite 200, Alexandria VA 22304.7330, USA

Tài liệu tham khảo

Lin, 1965, Computer Solutions on the Traveling salesman problem, Bell Systems Technical Journal, 44, 2245, 10.1002/j.1538-7305.1965.tb04146.x David Applegate, Robert Bixby, Vašek Chvátal, William Cook, Finding tours in the TSP, Forschungsinstitut für Diskrete Mathematik, Report No. 99885, University of Bonn, 2003 Grover, 1992, Local search and the local structure of NP-complete problems, Operations Research Letters, 12, 235, 10.1016/0167-6377(92)90049-9 B. Codenotti, L. Margara, Local properties of some NP-complete problems, TR-92-021, International Computer Science Institute, University of California at Berkeley, 1992 Wesley Barnes, 2003, The theory of elementary landscapes, Applied Mathematics Letters, 16, 337, 10.1016/S0893-9659(03)80054-X Solomon, 2003, Weakly symmetric graphs, elementary landscapes and the TSP, Applied Mathematics Letters, 16, 401, 10.1016/S0893-9659(03)80064-2 Colletti, 2000, Linearity in the traveling salesman problem, Applied Mathematics Letters, 13, 27, 10.1016/S0893-9659(99)00181-0 Wesley Barnes, 2001, Local search structure in the symmetric traveling salesman problem under a general class of rearrangement neighborhoods, Applied Mathematics Letters, 14, 105, 10.1016/S0893-9659(00)00120-8 Rotman, 1994 Zgrablić, 2002, On quasiabelian Cayley graphs and graphical doubly regular representations, Discrete Mathematics, 244, 495, 10.1016/S0012-365X(01)00104-2 Biyikoglu, 2007, Laplacian eigenvectors of graphs Perron–Frobenius and Faber–Krahn type theorems, Lecture Notes in Mathematics, 1915, 10.1007/978-3-540-73510-6