Quasiabelian landscapes of the traveling salesman problem are elementary
Tài liệu tham khảo
Lin, 1965, Computer Solutions on the Traveling salesman problem, Bell Systems Technical Journal, 44, 2245, 10.1002/j.1538-7305.1965.tb04146.x
David Applegate, Robert Bixby, Vašek Chvátal, William Cook, Finding tours in the TSP, Forschungsinstitut für Diskrete Mathematik, Report No. 99885, University of Bonn, 2003
Grover, 1992, Local search and the local structure of NP-complete problems, Operations Research Letters, 12, 235, 10.1016/0167-6377(92)90049-9
B. Codenotti, L. Margara, Local properties of some NP-complete problems, TR-92-021, International Computer Science Institute, University of California at Berkeley, 1992
Wesley Barnes, 2003, The theory of elementary landscapes, Applied Mathematics Letters, 16, 337, 10.1016/S0893-9659(03)80054-X
Solomon, 2003, Weakly symmetric graphs, elementary landscapes and the TSP, Applied Mathematics Letters, 16, 401, 10.1016/S0893-9659(03)80064-2
Colletti, 2000, Linearity in the traveling salesman problem, Applied Mathematics Letters, 13, 27, 10.1016/S0893-9659(99)00181-0
Wesley Barnes, 2001, Local search structure in the symmetric traveling salesman problem under a general class of rearrangement neighborhoods, Applied Mathematics Letters, 14, 105, 10.1016/S0893-9659(00)00120-8
Rotman, 1994
Zgrablić, 2002, On quasiabelian Cayley graphs and graphical doubly regular representations, Discrete Mathematics, 244, 495, 10.1016/S0012-365X(01)00104-2
Biyikoglu, 2007, Laplacian eigenvectors of graphs Perron–Frobenius and Faber–Krahn type theorems, Lecture Notes in Mathematics, 1915, 10.1007/978-3-540-73510-6