Quasi-sure flows associated with vector fields of low regularity
Tóm tắt
The authors construct a solution U
t
(x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a skew-adjoint operator not necessarily bounded and a nonlinear part with low regularity, namely one-fold differentiability. Besides, the equivalence of capacities under the transformations of the Wiener space induced by the solutions is obtained.
Tài liệu tham khảo
Ambrosio, L. and Figalli, A., On flows associated to Sobolev vector fields in Wiener space: an approach à la Di Perna-Lions, J. Funct. Anal., 256(1), 2009, 179–214.
Bogachev, V. I., Gaussian Measures, Mathematical Suverys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.
Cruzeiro, A. B., Équations différentielles sur l’espace de Wiener et formules de Cameron-Martin nonlin éaires, J. Funct. Anal., 54, 1983, 206–227.
Cruzeiro, A. B., Unicité de solutions d’équations différentielles sur l’espace de Wiener, J. Funct. Anal., 58, 1984, 335–347.
Denis, L., Quasi-sure analysis related to sub-Markovian semi-group, Potential Anal., 6, 1997, 289–311.
Gross, L., Abstract Wiener spaces, in“Proc. Fifth Berkeley Sympos. Math. Statist. and Prob.”, University of California Press, Berkeley, CA, 1 (1), 1965, 31–42.
Huang, Z. Y. and Yan, J. A., Introduction to Infinite Dimensional Stochastic Analysis, Monographs in Pure and Appl. Mathematics, Chinese Academic Press, Beijing, 37, 1997 (in Chinese).
Kusuoka, S., Analysis on Wiener space. I. Nonlinear maps, J. Funct. Anal., 98, 1998, 122–168.
Malliavin, P. and Nualart, D., Quasi-sure analysis and Stratonovich anticipative stochastic differential equations, Probab. Theory Relat. Fields, 78, 1993, 45–55.
Malliavin, P., Stochastic Analysis, Grund. Math. Wissen., 313, Springer-Verlag, Berlin, 1997.
Peters, G., Anticipating flows on the Wiener space generated by vector fields of low regularity, J. Funct. Anal., 142, 1996, 129–192.
Ren, J. G., Analyse quasi-sûre des équations différentielles stochastiques, Bull. Sci. Math. II. Sér., 114, 1990, 187–213.
Shigekawa, I., Sobolev spaces of Banach valued functions associated with a Markov processes, Probab. Theory Relat. Fields, 99, 1994, 425–441.
Yun, Y. S., The quasi-sure existence of solutions for differential equations on Wiener space, J. Kyoto. Univ., 34(4), 1994, 767–796.
Yun, Y. S., A quasi-sure flow property and the equivalence of capacities for differential equations on the Wiener space, J. Funct. Anal., 137, 1996, 381–393.