Quasi-periodic solutions for a nonlinear wave equation

Commentarii Mathematici Helvetici - Tập 71 Số 1 - Trang 269-296 - 1996
Jürgen Pöschel1
1Mathematisches Institut A, Universität Stuttgart, Stuttgart

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. I. Bobenko andS. B. Kuksin,The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation, Comm. Math. Helv.70 (1995), 63–112.

J. Bourgain,Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear pde, IMRN (1994), 475–497.

H. Brezis,Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Am. Math. Soc.8 (1983), 409–426.

W. Craig andC. E. Wayne,Newton's method and periodic solutions of nonlinear wave equations, Commun. Pure Appl. Math.46 (1993), 1409–1498.

S. B. Kuksin,Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics 1556 Springer, Berlin, 1993.

S. B. Kuksin andP. Pöschel,Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (to appear).

J. Pöschel,On elliptic lower dimensional tori in hamiltonian systems, Math. Z.202 (1989), 559–608.

J. Pöschel,A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa (to appear).

J. Pöschel andE. Trubowitz,Inverse Spectral Theory, Academic Press, Boston, 1987.

P. H. Rabinowitz,Free vibrations for a semilinear wave equation, Commun. Pure Appl. Math.31 (1978), 31–68.

P. H. Rabinowitz,Large amplitude time periodic solutions of a semi-linear wave equation, Commun. Pure Appl. Math.37 (1984), 189–206.

C. E. Wayne,Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys.127 (1990), 479–528.