Quasi-convex free polynomials

Proceedings of the American Mathematical Society - Tập 142 Số 8 - Trang 2581-2591
Sriram Balasubramanian1, Scott McCullough2
1Department of Mathematics and Statistics, Indian Institute of Science Education and Research (IISER) – Kolkata, Mohanpur Campus, Nadia District, Pin: 741246, West Bengal, India
2Department of Mathematics, The University of Florida, Box 118105, Gainesville, Florida 32611-8105

Tóm tắt

LetRx\mathbb R\langle x \rangledenote the ring of polynomials inggfreely noncommuting variablesx=(x1,,xg)x=(x_1,\dots ,x_g). There is a natural involution*onRx\mathbb R\langle x \rangledetermined byxj=xjx_j^*=x_jand(pq)=qp(pq)^*=q^* p^*, and a free polynomialpRxp\in \mathbb R\langle x \rangleis symmetric if it is invariant under this involution. IfX=(X1,,Xg)X=(X_1,\dots ,X_g)is aggtuple of symmetricn×nn\times nmatrices, then the evaluationp(X)p(X)is naturally defined and furtherp(X)=p(X)p^*(X)=p(X)^*. In particular, ifppis symmetric, thenp(X)=p(X)p(X)^*=p(X). The main result of this article says ifppis symmetric,p(0)=0p(0)=0and for eachnnand each symmetric positive definiten×nn\times nmatrixAAthe set{X:Ap(X)0}\{X:A-p(X)\succ 0\}is convex, thenpphas degree at most two and is itself convex, orp-pis a hermitian sum of squares.

Từ khóa


Tài liệu tham khảo

Ball, Joseph A., 2005, Structured noncommutative multidimensional linear systems, SIAM J. Control Optim., 44, 1474, 10.1137/S0363012904443750

Cimprič, Jakob, 2011, Noncommutative Positivstellensätze for pairs representation-vector, Positivity, 15, 481, 10.1007/s11117-010-0098-0

Dym, Harry, 2007, Irreducible noncommutative defining polynomials for convex sets have degree four or less, Indiana Univ. Math. J., 56, 1189, 10.1512/iumj.2007.56.2904

Dym, Harry, 2011, Non-commutative varieties with curvature having bounded signature, Illinois J. Math., 55, 427

Dym, Harry, 2007, The Hessian of a noncommutative polynomial has numerous negative eigenvalues, J. Anal. Math., 102, 29, 10.1007/s11854-007-0016-y

Effros, Edward G., 1997, Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems, J. Funct. Anal., 144, 117, 10.1006/jfan.1996.2958

Helton, J. William, 2002, “Positive” noncommutative polynomials are sums of squares, Ann. of Math. (2), 156, 675, 10.2307/3597203

Hay, Damon M., 2008, Non-commutative partial matrix convexity, Indiana Univ. Math. J., 57, 2815, 10.1512/iumj.2008.57.3638

Helton, J. William, 2012, Every convex free basic semi-algebraic set has an LMI representation, Ann. of Math. (2), 176, 979, 10.4007/annals.2012.176.2.6

Helton, J. William, 2004, Convex noncommutative polynomials have degree two or less, SIAM J. Matrix Anal. Appl., 25, 1124, 10.1137/S0895479803421999

Helton, J. William, 2007, Strong majorization in a free ∗-algebra, Math. Z., 255, 579, 10.1007/s00209-006-0032-0

Helton, J. William, 2009, Convex matrix inequalities versus linear matrix inequalities, IEEE Trans. Automat. Control, 54, 952, 10.1109/TAC.2009.2017087

Dmitry Kaliuzhnyi-Verbovetskyi and Victor Vinnikov, work in progress.

de Oliveira, Mauricio C., 2009, Engineering systems and free semi-algebraic geometry, 17, 10.1007/978-0-387-09686-5_2

Klep, Igor, 2007, A nichtnegativstellensatz for polynomials in noncommuting variables, Israel J. Math., 161, 17, 10.1007/s11856-007-0070-2

Klep, Igor, 2008, Sums of Hermitian squares and the BMV conjecture, J. Stat. Phys., 133, 739, 10.1007/s10955-008-9632-x

McCullough, Scott, 2001, Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl., 326, 193, 10.1016/S0024-3795(00)00285-8

Muhly, Paul S., 2008, Schur class operator functions and automorphisms of Hardy algebras, Doc. Math., 13, 365, 10.4171/dm/250

Popescu, Gelu, 2010, Free holomorphic functions on the unit ball of 𝐵(ℋ)ⁿ. II, J. Funct. Anal., 258, 1513, 10.1016/j.jfa.2009.10.014

Schützenberger, M. P., 1961, On the definition of a family of automata, Information and Control, 4, 245, 10.1016/S0019-9958(61)80020-X

Schmüdgen, Konrad, 1990, Unbounded operator algebras and representation theory, 37, 10.1007/978-3-0348-7469-4

Schmüdgen, Konrad, 2009, Noncommutative real algebraic geometry—some basic concepts and first ideas, 325, 10.1007/978-0-387-09686-5_9

Voiculescu, Dan-Virgil, 2010, Free analysis questions II: the Grassmannian completion and the series expansions at the origin, J. Reine Angew. Math., 645, 155, 10.1515/CRELLE.2010.063