Quasi-Sure Analysis Related to a Sub-Markovian Semi-Group

Springer Science and Business Media LLC - Tập 6 - Trang 289-311 - 1997
L. Denis

Tóm tắt

We construct vector-valued Sobolev spaces $$F_\mathbb{B}^{r,p} $$ , related to a general sub-Markovian semi-group and we give conditions for c r,p-quasi-everywhere convergence.

Tài liệu tham khảo

Bouleau, N. and Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies in Math., 1991. Dellacherie, C. and Meyer, P.A.: Probabilités et Potentiel, Chapitres V à VIII, Théorie des Martingales, Hermann, Paris, 1980. Denis, L.: Convergence quasi-partout pour les capacités définies par un semi-groupe sousmarkovien, C.R. Acad. Sc. Paris 315(1992), 1033-1036. Denis, L.: Analyse quasi-sûre de certaines propriétés classiques sur l'espace de Wiener, thèse de doctorat de l'Université Paris VI, 1994. Fernique, X.: Intégrabilité des vecteurs gaussiens, C.R. Acad. Sc. Paris 270(1970), 1698-1699. Feyel, D. and de La Pradelle, A.: Espaces de Sobolev gaussiens, Ann. Inst. Fourier 39(4) (1989), 875-908. Feyel, D. and de La Pradelle, A.: Capacités gaussiennes, Ann. Inst. Fourier 41(1) (1991), 49-76. Fukushima, M. and Kaneko, H.: On (r,p)-capacities for general Markovian semi-groups, in: Infinite Dimensional Analysis and Stochastic Processes, p. 41-47, Pitman, Boston-London-Melbourne, 1985. Fukushima, M.: Dirichlet Forms and Markov Processes, North-Holland, Amsterdam-Oxford-New-York, 1980. Fukushima, M.: Capacitary maximal inequalities and an ergodic theorem, in: Probability Theory and Mathematical Statistics, p. 130-136, p. 38-50, Lecture N. in Math., Vol. 1021, Springer-Verlag, Berlin-Heidelberg-New-York, 1983. Fukushima, M.: Two Topics related to Dirichlet forms: quasi-everywhere convergences and additive functionals, in: CIME Courses on Dirichlet Forms 1992, Lecture N. in Math., Vol. 1563, Springer-Verlag, Berlin-Heidelberg-New-York, 1994. Krengel, U.: Ergodic Theorems, Walter de Gruyter, Berlin-New-York, 1985. Malliavin, P. and Nualart, D.: Quasi sure analysis of stochastic flows and Banach space valued smooth functionals on the Wiener space, J. Funct. Anal. 112(1993), 287-317. Ren, J.: Analyse quasi-sûre des martingales régulières, C.R. Acad. Sc. Paris 317(1993), 299-302. Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin-Heidelberg-New-York, 1991. Shigekawa, I.: Sobolev spaces of Banach-valued functions associated with a Markov process, Probability Theory and Related Fields 99(1994), 425-442. Stein, E.M.: Singular Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, 1970. Sugita, H.: Sobolev spaces of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ. 25(1) (1985), 31-48. Sugita, H.: Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math. 25(1988), 665-696.