Quasi-SMILES as a tool to utilize eclectic data for predicting the behavior of nanomaterials
Tài liệu tham khảo
Buzea, 2007, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases, 2, MR17, 10.1116/1.2815690
Duchowicz, 2015, QSPR studies on refractive indices of structurally heterogeneous polymers, Chemom. Intell. Lab. Syst., 140, 86, 10.1016/j.chemolab.2014.11.008
Gajewicz, 2015, Towards understanding mechanisms governing cytotoxicity of metaloxides nanoparticles: hints from nano-qsar studies, Nanotoxicology, 9, 313, 10.3109/17435390.2014.930195
CORAL, http://www.insilico.eu/coral (Accessed Feb 5, 2016)
Ibezim, 2012, QSAR on aryl-piperazine derivatives with activity on malaria, Chemom. Intell. Lab. Syst., 110, 81, 10.1016/j.chemolab.2011.10.002
Kar, 2016, Extrapolating between toxicity endpoints of metal oxide nanoparticles: predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with nano-QTTR, Ecotoxicol. Environ. Saf., 126, 238, 10.1016/j.ecoenv.2015.12.033
Kleandrova, 2015, In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect, Mini-Rev. Med. Chem., 15, 677, 10.2174/1389557515666150219143604
Lewinski, 2008, Cytotoxicity of nanopartides, Small, 4, 26, 10.1002/smll.200700595
Manganelli, 2016, QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO2 nanoparticles, Chemosphere, 144, 995, 10.1016/j.chemosphere.2015.09.086
Melagraki, 2013, Enalos KNIME nodes: exploring corrosion inhibition of steel in acidic medium, Chemom. Intell. Lab. Syst., 123, 9, 10.1016/j.chemolab.2013.02.003
Ojha, 2011, Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection, Chemom. Intell. Lab. Syst., 109, 146, 10.1016/j.chemolab.2011.08.007
Organisation For Economic Co-Operation And Development (OECD)
Puzyn, 2011, Using nano-QSAR to predict the cytotoxicity of metaloxide nanoparticles, Nat. Nanotechnol., 6, 175, 10.1038/nnano.2011.10
Ray, 2009, Toxicity and environmental risks of nanomaterials: challenges and future needs, J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev., 27, 1, 10.1080/10590500802708267
Scotti, 2014, Docking and PLS studies on a set of thiophenes RNA polymerase inhibitors against Staphylococcus aureus, Curr. Top. Med. Chem., 14, 64, 10.2174/1568026613666131113151347
Singh, 2014, Nano-QSAR modeling for predicting biological activity of diverse nanomaterials, RSC Adv., 4, 13215, 10.1039/C4RA01274G
Speck-Planche, 2015, Multi-target QSAR approaches for modeling protein inhibitors. Simultaneous prediction of activities against biomacromolecules present in Gram-negative bacteria, Curr. Top. Med. Chem., 15, 1801, 10.2174/1568026615666150506144814
Toropov, 2015, Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes, Chemosphere, 124, 40, 10.1016/j.chemosphere.2014.10.067
Toropov, 2015, Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions, Chemosphere, 139, 18, 10.1016/j.chemosphere.2015.05.042
Toropov, 2012, Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli, Chemosphere, 89, 1098, 10.1016/j.chemosphere.2012.05.077
Toropov, 2014, Comprehension of drug toxicity: software and databases, Comput. Biol. Med., 45, 20, 10.1016/j.compbiomed.2013.11.013
Toropov, 2015, Use of Quasi-SMILES and Monte Carlo optimization to develop quantitative feature property/activity relationships (QFPR/QFAR) for nanomaterials, Curr. Top. Med. Chem., 15, 1837, 10.2174/1568026615666150506152000
Toropova, 2015, Mutagenicity: QSAR-quasi-QSAR-nano-QSAR, Mini Rev. Med. Chem., 15, 608, 10.2174/1389557515666150219121652
Toropova, 2015, Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions, Chemosphere, 139, 18, 10.1016/j.chemosphere.2015.05.042
Veselinović, 2015, In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method, Int. J. Pharm., 495, 404, 10.1016/j.ijpharm.2015.08.078
Veselinović, 2015, Monte Carlo method-based QSAR modeling of penicillins binding to human serum proteins, Arch. Pharm., 348, 62, 10.1002/ardp.201400259
Weininger, 1988, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci., 28, 31, 10.1021/ci00057a005
Weininger, 1990, Smiles. 3. Depict. Graphical depiction of chemical structures, J. Chem. Inf. Comput. Sci., 30, 237, 10.1021/ci00067a005
Weininger, 1989, SMILES: 2. algorithm for generation of unique SMILES notation, J. Chem. Inf. Comput. Sci., 29, 97, 10.1021/ci00062a008