Chỉ số tinh thể thạch anh: Bằng chứng định lượng mới về silica sinh học của đá bùn chứa hữu cơ từ cuối Ordovician đến đầu Silurian ở lưu vực Tứ Xuyên và các khu vực lân cận, Trung Quốc

Science China Earth Sciences - Tập 64 - Trang 773-787 - 2021
Guoheng Liu1,2, Gangyi Zhai2, Rui Yang3, Tingpeng He4, Bin Wei5
1School of Geosciences, China University of Petroleum (East China), Qingdao, China
2Oil and Gas Survey, China Geological Survey, Beijing, China
3Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan, China
4Chongqing Institute of Geology and Mineral Resource, Chongqing, China
5Liaohe Petroleum Exploration Bureau, Panjin, China

Tóm tắt

Chỉ số tinh thể thạch anh (QCI) được sử dụng để phản ánh quá trình tinh thể hóa silica trong đá phiến Wufeng (WF) từ cuối Ordovician và đá phiến Longmaxi (LM) từ đầu Silurian, cũng như silica có nguồn gốc từ tro núi lửa trong đá phiến tuffaceous của Formation Lucaogou, nhằm phân biệt hai loại silica này. Silica trong các sinh quyển graptolite khác nhau cho thấy sự tinh thể hóa khác nhau. Các sinh quyển graptolite WF2–3 và LM1–4 có giá trị QCI thấp hơn rõ rệt so với các sinh quyển graptolite LM5–9 và các mẫu của Formation Lucaogou. Các tổ chức graptolite đóng vai trò hấp phụ, cố định và kết tủa trong việc tích tụ và làm giàu silicon trong lớp đất. Nguồn gốc sinh học gây ra quá trình tinh thể hóa thạch anh kém nhất trong các mẫu sinh quyển graptolite WF2–3 và LM1–4. Silica có nguồn gốc từ tro núi lửa trong đá phiến tuffaceous của Formation Lucaogou thể hiện quá trình tinh thể hóa thạch anh tương đối kém do cường độ diagenesis yếu hơn. Nhìn chung, mặc dù các sinh quyển graptolite WF2–3 và LM1–4 trải qua quá trình diagenesis mạnh mẽ và chứa một lượng nhỏ thạch anh mảnh vụn, nhưng silica vẫn cho thấy giá trị QCI thấp hơn so với silica có nguồn gốc từ tro núi lửa trong đá phiến tuffaceous của Formation Lucaogou. Quá trình tinh thể hóa silica sinh học kém hơn nhiều so với silica có nguồn gốc từ tro núi lửa. QCI là một chỉ số định lượng hiệu quả để thể hiện silica sinh học trong các đá phiến giàu hữu cơ và giàu silica.

Từ khóa


Tài liệu tham khảo

Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity. Sediment Geol, 47: 125–148 Boström K, Kraemer T, Gartner S. 1973. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chem Geol, 11: 123–148 Botting J P, Muir L A, Wang W, Qie W, Tan J, Zhang L, Zhang Y. 2018. Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction. Gondwana Res, 61: 150–171 Chen X. 1990. Graptolite Depth Zonation (in Chinese with English abstract). Acta Palaeontol Sin, 29: 507–526 Chen X, Fan J X, Wang W H, Wang H Y, Nie H K, Shi X W, Wen Z D, Chen D Y, Li W J. 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Sci China Earth Sci, 60: 1133–1146 Chen X, Fan J X, Zhang Y G, Wang H Y, Chen Q, Wang W H, Liang F, Guo W, Zhao Q, Nie H K, Wen Z D, Sun Z Y. 2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform (in Chinese with English abstract). J Stratigr, 39: 351–358 Chen X, Rong J Y, Fan J X, Zhan R B, Zhang Y G, Li R Y, Wang Y, Mitchell C E, Harper D A T. 2000. A global correlation of biozones across the Ordovician-Silurian boundary (in Chinese with English abstract). Acta Palaeontol Sin, 39: 100–114 Combaz A. 1980. Les kérogènes vus au micrscope (in French). In: Durand B, ed. Kerogen-Insoluble Organic Matter from Sedimentary Rocks. Paris: Editions Technip. 55–111 Crowther P R, Richards R B. 1977. Cortical bandages and the graptolite zooid. Geol Palaeontol, 11: 9–46 Deutsch Y, Sandler A, Nathan Y. 1989. The high-low inversion of quartz. Thermochim Acta, 148: 467–472 Dong T, Harris N B, Ayranci K, Yang S. 2017. The impact of rock composition on geomechanical properties of a shale formation: Middle and Upper Devonian Horn River Group shale, Northeast British Columbia, Canada. AAPG Bull, 101: 177–204 Dymond J, Suess E, Lyle M. 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163–181 Han C, Han M, Jiang Z X, Han Z Z, Li H, Song Z G, Zhong W J, Liu K X, Wang C H. 2019. Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the Southern Sichuan Basin and its periphery, China. Geol J, 54: 439–449 He Z, Hu Z, Nie H, Li S, Xu J. 2017. Characterization of shale gas enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction-transformation evolution sequence. J Nat Gas Geosci, 2: 1–10 Hu H Y, Hao F, Guo X S, Dai F Y, Lu Y C, Ma Y Q. 2018. Investigation of methane sorption of overmature Wufeng-Longmaxi shale in the Jiaoshiba area, Eastern Sichuan Basin, China. Mar Pet Geol, 91: 251–261 Hu H Y, Hao F, Lin J F, Lu Y C, Ma Y Q, Li Q. 2017. Organic matterhosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. Int J Coal Geol, 173: 40–50 Huang Z L, Liu G H, Li T J, Li Y T, Yin Y, Wang L. 2017. Characterization and control of mesopore structural heterogeneity for low thermal maturity shale: A case study of Yanchang Formation Shale, Ordos Basin. Energy Fuels, 31: 11569–11586 Jiang S, Tang X, Cai D, Xue G, He Z, Long S, Peng Y, Gao B, Xu Z, Dahdah N. 2017. Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan Basin in China. J Pet Sci Eng, 150: 334–347 Jin Z J, Nie H K, Liu Q Y, Zhao J H, Jiang T. 2018. Source and seal coupling mechanism for shale gas enrichment in upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery. Mar Pet Geol, 97: 78–93 Kozlowski R. 1949. Les graptolites et quelques nouveaux groups d’animaux due Tremadoc de la Pologne. Palaeontol Pol, 31: 1–235 Liu B, Bechtel A, Gross D, Fu X F, Li X N, Sachsenhofer R F. 2018. Middle Permian environmental changes and shale oil potential evidenced by high-resolution organic petrology, geochemistry and mineral composition of the sediments in the Santanghu Basin, Northwest China. Int J Coal Geol, 185: 119–137 Liu D, Hou X, Jiang J. 1995. A study on composition and structure of graptolites using micro-FT-IR and TOF-SIMS. Sci Geol Sin, 4: 105–110 Liu G H, Liu B, Huang Z L, Chen Z Y, Jiang Z X, Guo X B, Li T W, Chen L. 2018. Hydrocarbon distribution pattern and logging identification in lacustrine fine-grained sedimentary rocks of the Permian Lucaogou Formation from the Santanghu Basin. Fuel, 222: 207–231 Liu G H, Zhai G Y, Huang Z L, Zou C N, Xia X H, Shi D S, Zhou Z, Zhang C, Chen R, Yu S F, Chen L, Zhang S H. 2019a. The effect of tuffaceous material on characteristics of different lithofacies: A case study on Lucaogou Formation fine-grained sedimentary rocks in Santanghu Basin. J Pet Sci Eng, 179: 355–377 Liu G H, Zhai G Y, Zou C N, Cheng L J, Guo X B, Xia X H, Shi D S, Yang Y R, Zhang C, Zhou Z. 2019b. A comparative discussion of the evidence for biogenic silica in Wufeng-Longmaxi siliceous shale reservoir in the Sichuan Basin, China. Mar Pet Geol, 109: 70–87 Luo Q Y, Hao J Y, Skovsted C B, Luo P, Khana I, Wu J, Zhong N N. 2017. The organic petrology of graptolites and maturity assessment of the Wufeng-Longmaxi Formations from Chongqing, China: Insights from reflectance cross-plot analysis. Int J Coal Geol, 183: 161–173 Ma Y, Cai X, Zhao P. 2018. China’s shale gas exploration and development: Understanding and practice. Pet Expl Dev, 45: 589–603 Marinoni N, Broekmans M A T M. 2013. Microstructure of selected aggregate quartz by XRD, and a critical review of the crystallinity index. Cement Concrete Res, 54: 215–225 Murata K J, Norman M B. 1976. An index of crystallinity for quartz. Am J Sci, 276: 1120–1130 Plyusnina II. 1978. Study of the disorder in the structure of chalcedony by infrared spectroscopy (in Russian). Doklady Akademia Nauk USSR, 240: 839–842 Qiu Z, Zou C, Li X, Wang H, Dong D, Lu B, Zhou S, Shi Z, Feng Z, Zhang M. 2018. Discussion on the contribution of graptolite to organic enrichment and gas shale reservoir: A case study of the Wufeng-Longmaxi shales in South China. J Nat Gas Geosci, 3: 147–156 Rowe H D, Loucks R G, Ruppel S C, Rimmer S M. 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction. Chem Geol, 257: 16–25 Suchý V, Sýkorová I, Stejskal M, Šafanda J, Machovič V ı, Novotná M. 2002. Dispersed organic matter from Silurian shales of the Barrandian Basin, Czech Republic: Optical properties, chemical composition and thermal maturity. Int J Coal Geol, 53: 1–25 Shoval S, Ginott Y, Nathan Y. 1991. A new method for measuring the crystallinity index of quartz by infrared spectroscopy. Mineral Mag, 55: 579–582 Towe K M, Urbanek A. 1972. Collagen-like structures in Ordovician graptolite periderm. Nature, 237: 443–445 Wang S, Zou C, Dong D, Wang Y, Huang J, Guo Z. 2014. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas (in Chinese with English abstract). Acta Sci Nat Univ Pekinensis, 50: 476–486 Wang Y M, Dong D Z, Huang J L, Li X J, Wang S F. 2016. Guanyinqiao Member lithofacies of the Upper Ordovician Wufeng Formation around the Sichuan Basin and the significance to shale gas plays, SW China. Pet Exploration Dev, 43: 45–53 Wright A M, Spain D, Ratcliffe K T. 2010. Application of inorganic whole rock geochemistry to shale resource plays. In: Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada. October, 19–21. SPE-137946-MS Yamamoto K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sediment Geol, 52: 65–108 Yan C N, Jin Z J, Zhao J H, Du W, Liu Q Y. 2018. Influence of sedimentary environment on organic matter enrichment in shale: A case study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China. Mar Petrol Geol, 92: 880–894 Yan D T, Chen D Z, Wang Q C, Wang J G. 2010. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China. Geology, 38: 599–602 Yang R, Jia A Q, He S, Hu Q H, Dong T, Hou Y G, Yan J P. 2020. Water adsorption characteristics of organic-rich Wufeng and Longmaxi Shales, Sichuan Basin (China). J Pet Sci Eng, 193: 107387 Yang X R, Yan D T, Wei X S, Zhang L W, Zhang B, Xu H W, Gong Y, He J. 2018. Different formation mechanism of quartz in siliceous and argillaceous shales: A case study of Longmaxi Formation in South China. Mar Pet Geol, 94: 80–94 Zhang K, Song Y, Jiang S, Jiang Z, Jia C, Huang Y, Wen M, Liu W, Xie X, Liu T, Wang P, Shan C, Wu Y. 2019. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze region. Mar Pet Geol, 99: 488–497 Zhang L C, Li B, Jiang S, Xiao D S, Lu S F, Zhang Y Y, Gong C, Chen L. 2018. Heterogeneity characterization of the lower Silurian Longmaxi marine shale in the Pengshui area, South China. Int J Coal Geol, 195: 250–266 Zhang S H, Liu C Y, Liang H, Wang J Q, Bai J K, Yang M H, Liu G H, Huang H X, Guan Y Z. 2018. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China. Int J Coal Geol, 185: 44–60 Zhao J H, Jin Z J, Jin Z K, Geng Y K, Wen X, Yan C N. 2016. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China. Int J Coal Geol, 163: 52–71 Zhao J H, Jin Z J, Jin Z K, Wen X, Geng Y K. 2017. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution. J Nat Gas Sci Eng, 38: 21–38 Zou C, Dong D, Wang S, Li J, Li X, Wang Y, Li D, Cheng K. 2010. Geological characteristics and resource potential of shale gas in China. Pet Expl Dev, 37: 641–653