Quark matter description in a Tsallis entropy approach

Springer Science and Business Media LLC - Tập 55 - Trang 1-8 - 2019
Carolina Barboza Mendoza1, G. Herrera Corral1
1Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico

Tóm tắt

A non-additive entropy is used to describe quark matter. We consider a non-extensive thermodynamic system in the framework of the MIT bag model of hadrons, in order to consider the correlation between quarks and gluons due to strong interactions. The non-additive entropy of the system describes quarks and gluons as two probabilistically independent subsystems. We analyze the phase diagram in terms of the correlation parameter q that enters the sum of entropies in the Tsallis prescription. For the case of non-zero chemical potentials it can be shown that the systems with $ q\le q_{\max}$ may be associated with the weakly coupled systems while those with $q > q_{\max}$ are more correlated. Furthermore, we find that the critical temperature for the hadron increases as the correlation between quarks and gluons increases, according to the expectations.

Tài liệu tham khảo

D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973) H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973) N. Cabibbo, G. Parisi, Phys. Lett. B 59, 67 (1975) J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975) A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974) C. Tsallis, J. Stat. Phys. 52, 479 (1988) C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer Science & Business Media, 2009) C. Tsallis, Z. Gonzalez Arenas, EPJ Web of Conferences 71, 00132 (2014) I. Bediaga, E.M. Curado, J.M. de Miranda, Physica A 286, 156 (2000) M. Althoff et al., Z. Phys. C 22, 307 (1984) V. Khachatryan et al., Phys. Rev. Lett. 105, 022002 (2010) V. Khachatryan et al., JHEP 02, 041 (2010) L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015) T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci, M.W. Paradza, J. Phys. G 45, 055001 (2018) A. Khuntia, S. Tripathy, R. Sahoo, J. Cleymans, Eur. Phys. J. A 53, 103 (2017) K. Saraswat, P. Shukla, V. Singh, J. Phys. Commun. 2, 035003 (2018) Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Phys. Rev. C 79, 051901 (2009) E. Megías, D. Menezes, A. Deppman, Physica A 421, 15 (2015) P. HG Cardoso, T. Nunes da Silva, A. Deppman, D.P. Menezes, Eur. Phys. J. A 53, 191 (2017) J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998) J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999) F. Caruso, C. Tsallis, Phys. Rev. E 78, 021102 (2008) S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000) S. Furuichi, arXiv:quant-ph/0504023 (2005) A. Vidiella-Barranco, Phys. Lett. A 260, 335 (1999) S. Abe, Phys. Rev. A 65, 052323 (2002) S. Abe, Physica A 306, 316 (2002) A. Vershynina, J. Math. Phys. 60, 022201 (2019) N. Canosa, R. Rossignoli, Phys. Rev. Lett. 88, 170401 (2002) M. Rahaman, T. Bhattacharyya, J.E. Alam, arXiv:1906.02893 (2019) A. Deppman, Phys. Rev. D 93, 054001 (2016) A. Deppman, T. Frederico, E. Megías, D. Menezes, Entropy 20, 633 (2018) A. Deppman, E. Megias, D. Menezes, arXiv:1905.06382 (2019) A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, Phys. Rev. D 10, 2599 (1974) C. Tsallis, Eur. Phys. J. A 40, 257 (2009) A. Drago, A. Lavagno, P. Quarati, Physica A 344, 472 (2004) J. Rozynek, Physica A 440, 27 (2015) D.H. Rischke, B.L. Friman, H. Stocker, W. Greiner, J. Phys. G 14, 191 (1988) A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)