QuantumATK: an integrated platform of electronic and atomic-scale modelling tools

Journal of Physics Condensed Matter - Tập 32 Số 1 - Trang 015901 - 2020
Søren Smidstrup1, Troels Markussen1, Pieter Vancraeyveld1, Jess Wellendorff1, Julian Schneider1, Tue Gunst2,1, Brecht Verstichel1, Daniele Stradi1, Petr Khomyakov1, Ulrik Grønbjerg Vej-Hansen1, Maeng-Eun Lee1, Samuel T. Chill1, Filip Rasmussen1, Gabriele Penazzi1, Fabiano Corsetti1, Ari Ojanperä1, K. Jensen1, Mattias Palsgaard2,1, Umberto Martinez1, Anders Blom1, Mads Brandbyge2, Kurt Stokbro1
1Synopsys Denmark, Fruebjergvej 3, Postbox 4, DK-2100 Copenhagen, Denmark
2DTU Physics, Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Tóm tắt

Abstract

QuantumATK is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers. While different aspects and individual modules of the platform have been previously presented, the purpose of this paper is to give a general overview of the platform. The QuantumATK simulation engines enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations. Density functional theory is implemented using either a plane-wave basis or expansion of electronic states in a linear combination of atomic orbitals. The platform includes a long list of advanced modules, including Green’s-function methods for electron transport simulations and surface calculations, first-principles electron-phonon and electron-photon couplings, simulation of atomic-scale heat transport, ion dynamics, spintronics, optical properties of materials, static polarization, and more. Seamless integration of the different simulation engines into a common platform allows for easy combination of different simulation methods into complex workflows. Besides giving a general overview and presenting a number of implementation details not previously published, we also present four different application examples. These are calculations of the phonon-limited mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model simulation of lithium ion drift through a battery cathode in an external electric field, and electronic-structure calculations of the composition-dependent band gap of SiGe alloys.

Từ khóa


Tài liệu tham khảo

Shankar, 2008, J. Phys.: Condens. Matter, 20, 10.1088/0953-8984/20/6/064232

Zographos, 2017, Mater. Sci. Semicond. Process., 62, 49, 10.1016/j.mssp.2016.10.037

Shi, 2015, Chin. Phys. B, 25, 10.1088/1674-1056/25/1/018212

Nørskov, 2008, Chem. Soc. Rev., 37, 2163, 10.1039/b800260f

Islam, 2010, Phil. Trans. R. Soc. A, 368, 3255, 10.1098/rsta.2010.0070

Saal, 2013, JOM, 65, 1501, 10.1007/s11837-013-0755-4

Trau, 2001, Adv. Mater., 13, 975, 10.1002/1521-4095(200107)13:12/13<975::AID-ADMA975>3.0.CO;2-#

Goldbeck, 2012, The economic impact of molecular modelling of chemicals and materials

Nakai, 2014, Appl. Phys. Express, 7, 10.7567/APEX.7.025103

Xiao, 2019, Adv. Theory Simul., 2, 1800172, 10.1002/adts.201800172

Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752

Armiento, 2011, Phys. Rev. B, 84, 10.1103/PhysRevB.84.014103

Bartlett, 2007, Rev. Mod. Phys., 79, 291, 10.1103/RevModPhys.79.291

Hohenberg, 1964, Phy. Rev., 136, B864, 10.1103/PhysRev.136.B864

Kohn, 1965, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

Parr, 1994

Kohn, 1996, J. Phys. Chem., 100, 12974, 10.1021/jp960669l

Vogl, 1983, J. Phys. Chem. Solids, 44, 365, 10.1016/0022-3697(83)90064-1

Smidstrup, 2017, Phys. Rev. B, 96, 10.1103/PhysRevB.96.195309

Soler, 2002, J. Phys.: Condens. Matter, 14, 2745, 10.1088/0953-8984/14/11/302

Ozaki, 2003, Phys. Rev. B, 67, 10.1103/PhysRevB.67.155108

Kresse, 1993, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558

Giannozzi, 2009, J. Phys.: Condens. Matter, 21, 10.1088/0953-8984/21/39/395502

Stokbro, 2010, Phys. Rev. B, 82, 10.1103/PhysRevB.82.075420

Aradi, 2007, J. Phys. Chem. A, 111, 5678, 10.1021/jp070186p

Klimeck, 2002, Comput. Model. Eng. Sci., 3, 601, 10.3970/cmes.2002.003.601

Klimeck, 2010, Comp. Sci. Eng., 12, 28, 10.1109/MCSE.2010.32

Schneider, 2017, Modelling Simul. Mater. Sci. Eng., 25, 85007, 10.1088/1361-651X/aa8ff0

, 2019, LAMMPS Molecular Dynamics Simulator

Gale, 2003, Mol. Simul., 29, 291, 10.1080/0892702031000104887

Thirunavukkarasu, 2017, Superlattices Microstruct., 111, 649, 10.1016/j.spmi.2017.07.020

Dong, 2018, J. Appl. Phys., 123, 10.1063/1.5016823

Crovetto, 2017, Appl. Phys. Lett., 110, 10.1063/1.4976830

Sankaran, 2016, Phys. Rev. B, 94, 10.1103/PhysRevB.94.094424

Gunst, 2017, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.046601

Caridad, 2018, Nano Lett., 18, 4675, 10.1021/acs.nanolett.8b00797

Palsgaard, 2018, Nano Lett., 18, 7275, 10.1021/acs.nanolett.8b03474

Brandbyge, 2002, Phys. Rev. B, 65, 10.1103/PhysRevB.65.165401

Davidson, 1975, J. Comput. Phys., 17, 87, 10.1016/0021-9991(75)90065-0

Payne, 1992, Rev. Mod. Phys., 64, 1045, 10.1103/RevModPhys.64.1045

Wende, 2016

Dal Corso, 2005, Phys. Rev. B, 71, 10.1103/PhysRevB.71.115106

Blöchl, 1994, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Schlipf, 2015, Comput. Phys. Commun., 196, 36, 10.1016/j.cpc.2015.05.011

Van Setten, 2018, Comput. Phys. Commun., 226, 39, 10.1016/j.cpc.2018.01.012

Theurich, 2001, Phys. Rev. B, 64, 10.1103/PhysRevB.64.073106

Blum, 2009, Comput. Phys. Commun., 180, 2175, 10.1016/j.cpc.2009.06.022

Lejaeghere, 2016, Science, 351, aad3000, 10.1126/science.aad3000

Garrity, 2014, Comput. Mater. Sci., 81, 446, 10.1016/j.commatsci.2013.08.053

, 2019, Comparing Solid State DFT Codes, Basis Sets and Potentials

Marques, 2012, Comput. Phys. Commun., 183, 2272, 10.1016/j.cpc.2012.05.007

Heyd, 2003, J. Chem. Phys., 118, 8207, 10.1063/1.1564060

Heyd, 2005, J. Chem. Phys., 123, 10.1063/1.2085170

Krukau, 2006, J. Chem. Phys., 125, 10.1063/1.2404663

Grimme, 2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Perdew, 2008, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.136406

Hammer, 1999, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413

Sun, 2015, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.036402

Paier, 2006, J. Chem. Phys., 124, 10.1063/1.2187006

Lin, 2016, J. Chem. Theory Comput., 12, 2242, 10.1021/acs.jctc.6b00092

Ferreira, 2008, Phys. Rev. B, 78, 10.1103/PhysRevB.78.125116

Ferreira, 2011, AIP Adv., 1, 32119, 10.1063/1.3624562

Tran, 2009, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.226401

Doumont, 2019, Phys. Rev. B, 99, 10.1103/PhysRevB.99.115101

Wang, 1995, Phys. Rev. B, 51, 17398, 10.1103/physrevb.51.17398

Schimka, 2011, J. Chem. Phys., 134, 10.1063/1.3524336

Landmann, 2012, J. Phys.: Condens. Matter, 24, 10.1088/0953-8984/24/19/195503

Bersch, 2008, Phys. Rev. B, 78, 10.1103/PhysRevB.78.085114

Berger, 2017, 97th edn

Dudarev, 1998, Phys. Rev. B, 57, 1505, 10.1103/PhysRevB.57.1505

Cococcioni, 2005, Phys. Rev. B, 71, 10.1103/PhysRevB.71.035105

Neugebauer, 1992, Phys. Rev. B, 46, 16067, 10.1103/PhysRevB.46.16067

Holst, 1993, J. Comput. Chem., 14, 105, 10.1002/jcc.540140114

Concus, 1976, 309

Amestoy, 2006, Parallel Comput., 32, 136, 10.1016/j.parco.2005.07.004

Ozaki, 2010, Phys. Rev. B, 81, 10.1103/PhysRevB.81.035116

Elstner, 1998, Phys. Rev. B, 58, 7260, 10.1103/PhysRevB.58.7260

Ammeter, 1978, J. Am. Chem. Soc., 100, 3686, 10.1021/ja00480a005

Boykin, 2002, Phys. Rev. B, 66, 10.1103/PhysRevB.66.125207

Bernstein, 2000, Phys. Rev. B, 62, 4477, 10.1103/PhysRevB.62.4477

Cerda, 2000, Phys. Rev. B, 61, 7965, 10.1103/PhysRevB.61.7965

Jancu, 1998, Phys. Rev. B, 57, 6493, 10.1103/PhysRevB.57.6493

Köhler, 2007, J. Phys. Chem. A, 111, 5622, 10.1021/jp068802p

Stillinger, 1985, Phys. Rev. B, 31, 5262, 10.1103/PhysRevB.31.5262

Mishin, 2001, Phys. Rev. B, 63, 10.1103/PhysRevB.63.224106

Baskes, 1997, Modelling Simul. Mater. Sci. Eng., 5, 149, 10.1088/0965-0393/5/2/005

Tersoff, 1988, Phys. Rev. B, 37, 6991, 10.1103/PhysRevB.37.6991

Brenner, 2002, J. Phys.: Condens. Matter, 14, 783, 10.1088/0953-8984/14/4/312

Chenoweth, 2008, J. Phys. Chem. A, 112, 1040, 10.1021/jp709896w

Yu, 2007, Phys. Rev. B, 75, 10.1103/PhysRevB.75.085311

Mitchell, 1993, J. Phys.: Condens. Matter, 5, 1031, 10.1088/0953-8984/5/8/006

Tangney, 2002, J. Chem. Phys., 117, 8898, 10.1063/1.1513312

Rowley, 1998, J. Chem. Phys., 108, 10209, 10.1063/1.476481

Mackerell, 2004, J. Comput. Chem., 25, 1584, 10.1002/jcc.20082

Keating, 1966, Phys. Rev., 145, 637, 10.1103/PhysRev.145.637

Plimpton, 1995, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039

Sheppard, 2012, J. Chem. Phys., 136, 74103, 10.1063/1.3684549

Liu, 1989, Math. Program., 45, 503, 10.1007/BF01589116

Bitzek, 2006, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.170201

Glass, 2006, Comput. Phys. Commun., 175, 713, 10.1016/j.cpc.2006.07.020

Kirkpatrick, 1983, Science, 220, 671, 10.1126/science.220.4598.671

Jónsson, 1998, 385

Henkelman, 2000, J. Chem. Phys., 113, 9978, 10.1063/1.1323224

Henkelman, 2000, J. Chem. Phys., 113, 9901, 10.1063/1.1329672

Smidstrup, 2014, J. Chem. Phys., 140, 10.1063/1.4878664

Sheppard, 2008, J. Chem. Phys., 128, 10.1063/1.2841941

Swope, 1982, J. Chem. Phys., 76, 637, 10.1063/1.442716

Martyna, 1992, J. Chem. Phys., 97, 2635, 10.1063/1.463940

Goga, 2012, J. Chem. Theory Comput., 8, 3637, 10.1021/ct3000876

Martyna, 1994, J. Chem. Phys., 101, 4177, 10.1063/1.467468

Müller-Plathe, 1997, J. Chem. Phys., 106, 6082, 10.1063/1.473271

Tribello, 2014, Comput. Phys. Commun., 185, 604, 10.1016/j.cpc.2013.09.018

Kondati Natarajan, 2017, J. Phys. Chem. C, 121, 4368, 10.1021/acs.jpcc.6b12657

Henkelman, 2001, J. Chem. Phys., 115, 9657, 10.1063/1.1415500

Xu, 2008, J. Chem. Phys., 129, 10.1063/1.2976010

Chill, 2014, J. Chem. Phys., 140, 10.1063/1.4880721

Aristoff, 2016, Commun. Appl. Math. Comput. Sci., 11, 171, 10.2140/camcos.2016.11.171

Vineyard, 1957, J. Phys. Chem. Solids, 3, 121, 10.1016/0022-3697(57)90059-8

Alfè, 2009, Comput. Physi. Commun., 180, 2622, 10.1016/j.cpc.2009.03.010

Parlinski, 1997, Phys. Rev. Lett., 78, 4063, 10.1103/PhysRevLett.78.4063

Blöchl, 1994, Phys. Rev. B, 49, 16223, 10.1103/PhysRevB.49.16223

Gunst, 2016, Phys. Rev. B, 93, 10.1103/PhysRevB.93.035414

Madsen, 2006, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007

Samsonidze, 2018, Adv. Energy Mater., 8, 1870095, 10.1002/aenm.201870095

King-Smith, 1993, Phys. Rev. B, 47, 1651, 10.1103/PhysRevB.47.1651

Bernardini, 1997, Phys. Rev. B, 56, 10.1103/PhysRevB.56.R10024

Blonski, 2009, J. Phys.: Condens. Matter, 21, 10.1088/0953-8984/21/42/426001

Blanco-Rey, 2018

Masuda, 2017, Phys. Rev. B, 96, 10.1103/PhysRevB.96.174401

Nikolić, 2018, 1

Petersen, 2008, J. Comput. Phys., 227, 3174, 10.1016/j.jcp.2007.11.035

Sanvito, 1999, Phys. Rev. B, 59, 11936, 10.1103/PhysRevB.59.11936

Sancho, 1985, J. Phys. F: Met. Phys., 15, 851, 10.1088/0305-4608/15/4/009

Sørensen, 2008, Phys. Rev. B, 77, 10.1103/PhysRevB.77.155301

Sørensen, 2009, Phys. Rev. B, 79, 10.1103/PhysRevB.79.205322

Stradi, 2016, Phys. Rev. B, 93, 10.1103/PhysRevB.93.155302

Todorov, 2000, Phil. Mag. B, 80, 421, 10.1080/13642810008208601

Lü, 2012, Phys. Rev. B, 85, 10.1103/PhysRevB.85.245444

Todorov, 2014, Eur. J. Phys., 35, 10.1088/0143-0807/35/6/065004

Zhang, 2011, J. Power Sources, 196, 2962, 10.1016/j.jpowsour.2010.11.113

Haug, 2008

Lü, 2014, Phys. Rev. B, 89, 10.1103/PhysRevB.89.081405

Gunst, 2017, 13

Vandenberghe, 2011, J. Appl. Phys., 109, 10.1063/1.3595672

Markussen, 2017, Phys. Rev. B, 95, 10.1103/PhysRevB.95.245210

Gunst, 2017, Phys. Rev. B, 96, 10.1103/PhysRevB.96.161404

Markussen, 2009, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.055502

Sivan, 1986, Phys. Rev. B, 33, 551, 10.1103/PhysRevB.33.551

Henrickson, 2002, J. Appl. Phys., 91, 6273, 10.1063/1.1473677

Chen, 2012, Phys. Rev. B, 85, 10.1103/PhysRevB.85.155441

Zhang, 2014, Phys. Rev. B, 90, 10.1103/PhysRevB.90.195428

Palsgaard, 2018, Phys. Rev. Appl., 10, 10.1103/PhysRevApplied.10.014026

Pedone, 2006, J. Phys. Chem. B, 110, 11780, 10.1021/jp0611018

Morgan, 1986, SIAM J. Sci. Stat. Comput., 7, 817, 10.1137/0907054

Anderson, 1999, 3rd edn

Marek, 2014, J. Phys.: Condens. Matter, 26, 10.1088/0953-8984/26/21/213201

Hamaekers, 2019, Tremolo-X

, 2019, The HDF5 Library and File Format

Neese, 2012, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, 73, 10.1002/wcms.81

Enkovaara, 2010, J. Phys.: Condens. Matter, 22, 10.1088/0953-8984/22/25/253202

Clark, 2005, Z. Kristallogr.-Cryst. Mater., 220, 567, 10.1524/zkri.220.5.567.65075

Stradi, 2017, J. Phys.: Condens. Matter, 29, 10.1088/1361-648X/aa66f3

Brandl, 2019, Sphinx Python Documentation Generator

, 2019, QuantumATK Documentation

Stradi, 2017, Nano Lett., 17, 2660, 10.1021/acs.nanolett.7b00473

Zhong, 2016, Sci. Rep., 6, 21786, 10.1038/srep21786

Fiori, 2014, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207

, 2018, The International Roadmap for Devices and Systems: 2017

Mueller, 2010, Nat. Photon., 4, 297, 10.1038/nphoton.2010.40

Szabó, 2015, IEEE Electron Device Lett., 36, 514, 10.1109/LED.2015.2409212

Singh-Miller, 2009, Phys. Rev. B, 80, 10.1103/PhysRevB.80.235407

Kasap, 2017, Electrical Conduction in Metals and Semiconductors, 10.1007/978-3-319-48933-9_2

Josell, 2009, Annu. Rev. Mater. Res., 39, 231, 10.1146/annurev-matsci-082908-145415

Bauer, 1998, Phys. Rev. B, 57, 11276, 10.1103/PhysRevB.57.11276

Gall, 2016, J. Appl. Phys., 119, 10.1063/1.4942216

Stewart, 1983, Rev. Sci. Instrum., 54, 1, 10.1063/1.1137207

Islam, 2014, Chem. Soc. Rev., 43, 185, 10.1039/C3CS60199D

Boulfelfel, 2011, J. Mater. Chem., 21, 16365, 10.1039/c1jm10725a

Islam, 2015, J. Mater. Chem. A, 3, 20399, 10.1039/C5TA05062F

English, 2015, Phys. Chem. Chem. Phys., 17, 12407, 10.1039/C5CP00629E

Rungger, 2010, Phys. Rev. B, 81, 10.1103/PhysRevB.81.235407

Kima, 2011, J. Power Sources, 196, 8590, 10.1016/j.jpowsour.2011.05.061

Kahle, 2018, Phys. Rev. Mater., 2, 10.1103/PhysRevMaterials.2.065405

Kutteh, 2014, J. Phys. Chem. C, 118, 11203, 10.1021/jp5004402

Khomyakov, 2015, Appl. Phys. Lett., 107, 10.1063/1.4928539

Braunstein, 1958, Phys. Rev., 109, 695, 10.1103/PhysRev.109.695

Taur, 1997, Proc. IEEE, 85, 486, 10.1109/5.573737

Li, 2012, 41

Zunger, 1990, Phys. Rev. Lett., 65, 353, 10.1103/PhysRevLett.65.353

van de Walle, 2009, Calphad, 33, 266, 10.1016/j.calphad.2008.12.005

Monkhorst, 1976, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188