Quantum stochastic calculus and quantum Gaussian processes

Indian Journal of Pure and Applied Mathematics - Tập 46 Số 6 - Trang 781-807 - 2015
K. R. Parthasarathy1
1Indian Statistical Institute, Delhi Centre, New Delhi, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. Araki, Factorizable representations of current algebra, Publ. RIMS, Kyoto Univ. Ser. A, 5 (1970), 361–422.

Arvind, B. Dutta, N. Mukunda and R. Simon, The real symplectic groups in quantum mechanics and optics, Pramana - J. Phys., 45 (1995), 471–497.

B. V. R. Bhat and K. R. Parthasarathy, Kolmogorov’s existence theorem for Markov processes in C*-algebras, Proc. Ind. Acad. Sci. (Math. Sci.), 104 (1994), 253–262.

F. Fagnola, On Quantum stochastic differential equations with unbounded coefficients, Probab. Th. and Rel. Fields, 86 (1990), 501–516.

F. Fagnola, Private communication.

V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely positive dynamical semigroups of n-level systems, J. Math. Phys., 17 (1976), 821–825.

T. Heinosaari, A. S. Holevo and M. M. Wolf, The semigroup structure of Gaussian channels, J. Quantum Inf. Comp., 10 (2010), 0619–0635.

A. S. Holevo, Probablistic and statistical aspects of quantum theory, (1982) (Amsterdam: North Holland).

R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolutions, Commun. Math. Phys., 93 (1984), 301–323.

N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, (1989) (Amsterdam: North Holland).

K. Ito, Stochastic integral, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524.

K. Ito, On a fomula concerning stochastic differentials, Nagoya Math. J., 3 (1951), 55–65.

G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48 (1976), 119–130.

K. R. Parthasarathy, An introduction to quantum stochastic calculus, (1992) (Basel: Birkhauser).

K. R. Parthasarathy, What is a Gaussian state? Commun. Stoch. Anal., 4 (2010), 143–160.

K. R. Parthasarathy, The symmetry group of Gaussian states in L 2(ℝn), in Prokhorov and Contemporary Probability, (2013), 349–369 (Eds. Shiryaev A. N., Varadhan S. R. S. and Pressman E. L., Berlin: Springer).

K. R. Parthasarathy and K. Schmidt, Positive definite kernels, continuous tensor products and central limit theorems of probability theory, Springer LNM 272 (1972) (Berlin).

R. F. Streater, Current commutation relations, Continuous tensor products and infinitely divisible group representations, Rendiconti di sc. Inst. di Fisica E. Fermi, Vol x1 (1969), 247–263.

P. Vanheuverzwijn, Generators of completely positive semigroups, Ann. Inst. H. Poincaré Sect. A (N.S.), 29 (1978), 123–138.