Quantum state transformations and the Schubert calculus
Tài liệu tham khảo
P. M. Alberti, A. Uhlmann, Stochasticity and partial order: doubly stochastic maps and unitary mixing, Dordrecht, Boston, 1982
P. Belkale. Local systems on P1/S for S a finite set. Ph.D. thesis, University of Chicago, 1999
Bennett, 2004, Quantum channel capacities, Science, 303, 1784, 10.1126/science.1092381
Berenstein, 2000, Coadjoint orbits, moment maps, and the Hilbert-Mumford criterion, J. Am. Math. Soc., 13, 422, 10.1090/S0894-0347-00-00327-1
Bhatia, 1997, 10.1007/978-1-4612-0653-8
Bott, 1982
Bravyi, 2004, Requirements for compatibility between local and multipartite quantum states, Quant. Inf. Quant. Comp., 4, 12
M. Christandl, G. Mitchison, The spectra of density operators and the Kronecker coefficients of the symmetric group. Available from: <arXiv:quant-ph/0409016>
da Silva, 2001
Edwards, 1984
Fulton, 1997
Fulton, 1991
Griffiths, 1978
Hardy, 2001, A method of areas for manipulating the entanglement properties of one copy of a two-particle pure state, Phys. Rev. A, 60, 1912, 10.1103/PhysRevA.60.1912
Harrow, 2004, A tight lower bound on the classical communication cost of entanglement dilution, IEEE Trans. Inf. Th., 50, 319, 10.1109/TIT.2003.822597
A. Hatcher, Vector bundles and K-theory. Incomplete text, 2004. Available from: <http://www.math.cornell.edu/hatcher/VBKT/VBpage.html>
Helmke, 1995, Eigenvalue inequalities and Schubert calculus, Math. Nachr., 171, 207, 10.1002/mana.19951710113
Hersch, 1962, Évaluations par défaut pour une summe quelconque de valeurs propers γk d’un opérateur c=a+b, a l’aide de valuers propres αi de a et βj de b, C. R. Acad. Sc. Paris, 254, 1559
Higuchi, 2003, One-qubit reduced states of a pure many-qubit state: Polygon inequalities, Phys. Rev. Lett., 90, 107902, 10.1103/PhysRevLett.90.107902
Horn, 1962, Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12, 225, 10.2140/pjm.1962.12.225
S. Johnson, The Schubert calculus and eigenvalue inequalities for sums of Hermitian matrices. Ph.D. thesis, University of California, Santa Barbara, 1979
Kirwan, 1984, Convexity properties of the moment mapping, III, Invent. Math., 77, 547, 10.1007/BF01388838
Klyachko, 1998, Stable bundles, representation theory and Hermitian operators, Selecta Math., 4, 419, 10.1007/s000290050037
Klyachko, 2000, Random walks on symmetric spaces and inequalities for matrix spectra, Linear Alg. Appl., 319, 37, 10.1016/S0024-3795(00)00219-6
Knutson, 2000, The symplectic and algebraic geometry of Horn’s problem, Lin. Alg. Appl., 319, 61, 10.1016/S0024-3795(00)00220-2
Knutson, 1999, The honeycomb model of GLn(C) tensor products I: proof of the saturation conjecture, J. Am. Math. Soc., 12, 1055, 10.1090/S0894-0347-99-00299-4
Knutson, 2004, The honeycomb model of GLn(C) tensor products II: puzzles determine facets of the Littlewood–Richardson cone, J. Am. Math. Soc., 17, 19, 10.1090/S0894-0347-03-00441-7
Lidskii, 1982, Spectral polyhedron of a sum of two Hermitian matrices, Funct. Anal. Appl., 10
Lieb, 1973, Proof of the strong subadditivity inequality of quantum-mechanical entropy, J. Math. Phys., 14, 1938, 10.1063/1.1666274
Linden, 2002, Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices, Phys. Rev. Lett., 89, 207901, 10.1103/PhysRevLett.89.207901
L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, American Mathematical Society, 2001
Nielsen, 1999, Conditions for a class of entanglement transformations, Phys. Rev. Lett., 83, 436, 10.1103/PhysRevLett.83.436
B. Totaro, Geometry and Analysis on Complex Manifolds, Chapter Tensor Products of Semistables are Semistable, World Scientific, 1994, pp. 242–250
A. Uhlmann, Wiss. Z. Karl-Marx-Univ, Leipzig, 20 (1971) 633
W. van Dam, P. Hayden, Rényi-entropic bounds on quantum communication, Technical report, 2002. Available from: <arXiv:quant-ph/0204093>
Weyl, 1912, Das asymtotische verteilungsgesetz de eigenwerte lineare parieller differentialgleichungen, Math. Ann., 71, 441, 10.1007/BF01456804
A. A. Klyachko, Quantum marginal problem and representations of the symmetric group. Available from: <arXiv:quant-ph/0409113>