Quantum secure direct communication over the collective amplitude damping channel

Su‐Juan Qin1,2, Qiaoyan Wen1, Meng Li1, Fu-Chen Zhu3
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Integrated Services Network, Xidian University, Xi’an, China
3National Laboratory for Modern Communications, Chengdu, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

Bennett C H, Brassadrd G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE Inter-national Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984. 175–179

Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chin Sci Bull, 2008, 53(9): 1310–1314

Gao F, Guo F Z, Wen Q Y, et al. Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci China Ser G-Phys Mech Astron, 2008, 51(12): 1853–1860

Wei D X, Yang X D, Luo J, et al. NMR experimental implementation of three-parties quantum superdense coding. Chin Sci Bull, 2004, 49(5): 423–426

Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 572–580

Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368

Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

Cai Q Y, Li B W. Improving the capacity of the Bostroem-Felbinger protocol. Phys Rev A, 2004, 69: 054301

Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21(4): 601–603

Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501

Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

Deng F G, Li X H, Li C Y, et al. Economical quantum secure direct communication network with single photons. Chin Phys, 2007, 16(12): 3553–3559

Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18–21

Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39: 3855–3863

Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A, 2006, 358: 256–258

Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 176–183

Shor P W. Scheme for reducing decoherence in quantum computer memory. Phys Rev A, 1995, 52: R2493

Steane A M. Error correcting codes in quantum theory. Phys Rev Lett, 1996, 77: 793–797

Wang X B. Quantum key distribution with two-qubit quantum codes. Phys Rev Lett, 2004, 92: 077902

Wang X B. Quantum error-rejection code with spontaneous parametric down-conversion. Phys Rev A, 2004, 69: 022320

Chen Y A, Zhang A N, Zhao Z, et al. Experimental quantum error rejection for quantum communication. Phys Rev Lett, 2006, 96: 220504

Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101

Giulini D, Joos E, Kiefer C, et al. Decoherence and the Appearance of a Classical World in Quantum Theory. Berlin: Springer-Verlag, 1996

Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901

Boileau J C, Gottesman D, Laamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901

Wang X B. Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys Rev A, 2005, 72: 050304R

Zhang Q, Yin J, Chen T Y, et al. Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys Rev A, 2006, 73: 020301

Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Phys A, 2006, 361: 233–238

Souza C E R, Borges C V S, Khoury A Z, et al. Quantum key distribution without a shared reference frame. Phys Rev A, 2008, 77: 032345

Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

Hughes R J, James D F V, Knill E H, et al. Decoherence bounds on quantum computation with trapped ions. Phys Rev Lett, 1996, 77: 3240–3243

Cirac J I, Pellizzari T, Zoller P. Enforcing coherent evolution in dissipative quantum dynamics. Science, 1996, 273: 1207–1210

van Enk S J, Cirac J I, Zoller P. Photonic channels for quantum communication. Science, 1998, 279: 205–208

Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

Duan L M, Guo G C. Optimal quantum codes for preventing collective amplitude damping. Phys Rev A, 1998, 58: 3491–3495

Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

Deng F G, Zhou P, Li X H, et al. Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168

Cai Q Y. The ping-pong protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801

O’Brien J L, Pryde G J, White A G, et al. Demonstration of an all-optical quantum controlled-NOT gate. Nature, 2003, 426: 264–267