Quantum randomness protected against detection loophole attacks

Quantum Information Processing - Tập 20 - Trang 1-20 - 2021
Piotr Mironowicz1,2, Gustavo Cañas3, Jaime Cariñe4,5, Esteban S. Gómez5,6, Johanna F. Barra5,6, Adán Cabello7,8, Guilherme B. Xavier9, Gustavo Lima5,6, Marcin Pawłowski2,10
1Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
2International Centre for Theory of Quantum Technologies, University of Gdansk, Gdańsk, Poland
3Departamento de Física, Universidad del Bio-Bio, Concepción, Chile
4Departamento de Ingeniería Eléctrica, Universidad Católica de la Santísima Concepción, Concepción, Chile
5Millennium Institute for Research in Optics, Universidad de Concepción, Concepción, Chile
6Departamento de Física, Universidad de Concepción, Concepción, Chile
7Departamento de Física Aplicada II, Universidad de Sevilla, Seville, Spain
8Instituto Carlos I de Física Teórica y Computacional, Universidad de Sevilla, Seville, Spain
9Institutionen för Systemteknik, Linköpings Universitet, Linköping, Sweden
10Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, Gdańsk, Poland

Tóm tắt

Device and semi-device-independent private quantum randomness generators are crucial for applications requiring private randomness. However, they are vulnerable to detection inefficiency attacks and this limits severely their usage for practical purposes. Here, we present a method for protecting semi-device-independent private quantum randomness generators in prepare-and-measure scenarios against detection inefficiency attacks. The key idea is the introduction of a blocking device that adds failures in the communication between the preparation and measurement devices. We prove that, for any detection efficiency, there is a blocking rate that provides protection against these attacks. We experimentally demonstrate the generation of private randomness using weak coherent states and standard avalanche photo-detectors.

Tài liệu tham khảo

Rarity, J.G., Owens, P.C.M., Tapster, P.R.: Quantum random-number generation and key sharing. J. Mod. Opt. 41, 2435 (1994) National Institute of Standards and Technology. Computer Security Division. Computer Security Resource Center Colbeck, R.: Quantum and Relativistic Protocols for Secure Multi-Party Computation. Ph.D. Thesis, Cambridge University. arXiv:0911.3814v2 (2009) Pironio, S., Massar, S.: Security of practical private randomness generation. Phys. Rev. A 87, 012336 (2013) Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010) Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011) Li, H.-W., Pawłowski, M., Yin, Z.-Q., Guo, G.-C., Han, Z.-F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012) Mironowicz, P., Tavakoli, A., Hameedi, A., Marques, B., Pawłowski, M., Bourennane, M.: Increased certification of semi-device independent random numbers using many inputs and more post-processing. New J. Phys. 18, 065004 (2016) Lunghi, T., Brask, J.B., Lim, C.C.W., Lavigne, Q., Bowles, J., Martin, A., Zbinden, H., Brunner, N.: Self-testing quantum random number generator. Phys. Rev. Lett. 114, 150501 (2015) Cao, Z., Zhou, H., Ma, X.: Loss-tolerant measurement-device-independent quantum random number generation. New J. Phys. 17, 125011 (2015) Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6, 011020 (2016) Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent ultrafast quantum random number generation. Phys. Rev. Lett. 118, 060503 (2017) Brask, J.B., Martin, A., Esposito, W., Houlmann, R., Bowles, J., Zbinden, H., Brunner, N.: Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination. Phys. Rev. Appl. 7, 054018 (2017) Dall’Arno, M., Passaro, E., Gallego, R., Pawłowski, M., Acín, A.: Detection loophole attacks on semi-device-independent quantum and classical protocols. Quant. Inf. Comput. 15, 37 (2015) Acín, A., Cavalcanti, D., Passaro, E., Pironio, S., Skrzypczyk, P.: Necessary detection efficiencies for secure quantum key distribution and bound randomness. Phys. Rev. A 93, 012319 (2016) Hameedi, A., Marques, B., Mironowicz, P., Saha, D., Pawłowski, M., Bourennane, M.: Experimental test of nonclassicality with arbitrarily low detection efficiency. Phys. Rev. A 102, 032621 (2020) Renner, R.: Security of Quantum Key Distribution. arXiv:quant-ph/0512258 (2005) Koenig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009) Grier, D.G.: A revolution in optical manipulation. Nature 424, 810 (2003) Lima, G., Vargas, A., Neves, L., Guzmán, R., Saavedra, C.: Manipulating spatial qudit states with programmable optical devices. Opt. Express 17, 10688 (2009) Neves, L., Lima, G., Gómez, J.A., Monken, C.H., Saavedra, C., Pádua, S.: Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005) Goyeneche, D., Cañas, G., Etcheverry, S., Gómez, E.S., Xavier, G.B., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115, 090401 (2015) Cañas, G., Etcheverry, S., Gómez, E.S., Saavedra, C., Xavier, G.B., Lima, G., Cabello, A.: Experimental implementation of an eight-dimensional Kochen–Specker set and observation of its connection with the Greenberger–Horne–Zeilinger theorem. Phys. Rev. A 90, 012119 (2014) Aguilar, E.A., Farkas, M., Martínez, D., Alvarado, M., Cariñe, J., Xavier, G.B., Barra, J.F., Cañas, G., Pawłowski, M., Lima, G.: Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses. Phys. Rev. Lett. 120, 230503 (2018) Solís-Prosser, M.A., Fernándes, M.F., Jiménez, O., Delgado, A., Neves, L.: Experimental minimum-error quantum state discrimination in high dimensions. Phys. Rev. Lett. 118, 100501 (2017) Marques, B., Matoso, A.A., Pimenta, W.M., Gutiérrez-Esparza, A.J., Santos, M.F., Pádua, S.: Experimental simulation of decoherence in photonics qudits. Sci. Rep. 5, 16049 (2017) Torres-Ruiz, F.A., Lima, G., Delgado, A., Pádua, S., Saavedra, C.: Decoherence in a double-slit quantum eraser. Phys. Rev. A 81, 042104 (2010) Lima, G., Neves, L., Guzmán, R., Gómez, E.S., Nogueira, W.A.T., Delgado, A., Vargas, A., Saavedra, C.: Experimental quantum tomography of photonic qudits via mutually unbiased basis. Opt. Express 19, 3542 (2011) Etcheverry, S., Cañas, G., Gómez, E.S., Nogueira, W.A.T., Saavedra, C., Xavier, G.B., Lima, G.: Quantum key distribution session with 16-dimensional photonic states. Sci. Rep. 3, 2316 (2013) Moreno, I., Velásquez, P., Fernandez-Pousa, C.R., Sánchez-López, M.M., Mateos, F.: Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display. J. Appl. Phys. 94, 3697 (2003) Liu, Y., Yuan, X., Li, M.H., Zhang, W., Zhao, Q., Zhong, J., Cao, Y., Li, Y.-H., Chen, L.-K., Li, H., Peng, T., Chen, Y.-A., Peng, C.-Z., Shi, S.-C., Wang, Z., You, L., Ma, X., Fan, J., Zhang, Q., Pan, J.-W.: High-speed device-independent quantum random number generation without a detection loophole. Phys. Rev. Lett. 120, 010503 (2018) Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave Version 4.2.0 Manual: A High-Level Interactive Language for Numerical Computations. http://www.gnu.org/software/octave/doc/interpreter (2016) Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625 (1999) Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design (2004). IEEE, New York, p. 284 Li, H.-W., Yin, Z.-Q., Wu, Y.-C., Zou, X.-B., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011) Mironowicz, P., Li, H.W., Pawłowski, M.: Properties of dimension witnesses and their semi-definite programming relaxations. Phys. Rev. A 90, 022322 (2014) Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496 (2002) Ambainis, A., Leung, D., Mancinska, L., Ozols, M.: Quantum random access codes with shared randomness. arXiv:0810.2937 (2008) Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement. Quantum Info. Comput. 1, 1 (2001) Pál, K.F., Vértesi, T.: Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems. Phys. Rev. A 82, 022116 (2010) Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49 (1996)