Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Litografi lượng tử: Một ứng dụng phi máy tính của thông tin lượng tử
Tóm tắt
Lý thuyết thông tin lượng tử hứa hẹn sẽ cách mạng hóa các công nghệ ngoài lĩnh vực tính toán và truyền thông. Trong bài báo này, chúng tôi chỉ ra cách mà sự rối lượng tử có thể được khai thác để vượt qua giới hạn tán xạ Rayleigh của lithografi quang học thông thường, và cho phép chế tạo các thiết bị nano ở quy mô ngắn hơn tùy ý so với bước sóng sử dụng. Xét về sự dễ dàng tương đối trong việc thực hiện lithografi quang học so với các phương pháp khác, cũng như chi phí tương đối liên quan đến việc chuyển đổi ngành công nghiệp lithografi sang mỗi công nghệ chế tạo mới, việc khai thác sự rối lượng tử để kéo dài tuổi thọ hữu ích của lithografi quang học có thể là lựa chọn kinh tế hấp dẫn.
Từ khóa
#lượng tử; lithografi quang học; rối lượng tử; công nghệ chế tạo; tán xạ RayleighTài liệu tham khảo
Sheats JR, Smith BW (eds) (1998) Microlithography Science and Technology, 1st Edition. Marcel Dekker Inc, New York
Wong AK-K (2001) Resolution Enhancement Techniques in Optical Lithography. SPIE – International Society for Optical Engineers, Tutorial Texts in Optical Engineering, TT 47, ISBN: 0-8194-3995-9
Litt LC, Roman B, Conley W, Cobb J (2004) Equipment Options on the Road to the 22 nm Node: Decisions, Decisions, Fut Fab Intl 17 http://www.future-fab.com/documents.asp?d_ID=2613
Brueck S (2004) Optical Litho: There Are No Fundamental Limits. In: Opto and Laser Europe. See http://www.optics.org/articles/ole/9/6/2/1
See for example http://www.nanotechweb.org/articles/news/3/7/16/1 (2004)
fi fi Kanellos M (2003) A Fab Construction Job, CfifiNETNews.com. Full text available at http://news.com.com/A+fab+construction+job/2100-1001_3-981060.html
Hutcheson GD, Hutcheson JD (1996) Technology and Economics in the Semiconductor Industry. Scientific American, pp 54–62
Boto A, Kok P, Abrams D, Braunstein S, Williams CP, Dowling JP (2000) Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit. Phys Rev Lett 85(13):2733–2736
Kok P, Boto A, Abrams D, Williams CP, Braunstein S, Dowling JP (2001) Quantum Interferometric Optical Lithography: Towards Arbitrary Two-Dimensional Patterns. Phys Rev A 63:063407
D’Angelo M, Chekhova MV, Shih Y (2001) Two-Photon Diffraction and Quantum Lithography. Phys Rev Lett 87:013602
Bouwmeester D (2004) High NOON for Photons. Nature 429(6988):139
Walther P, Pan J, Aspelmeyer M, Ursin R, Gasparoni S, Zeilinger A (2004) DeBroglie Wavelength of a Non-Local Four-Photon State. Nature 429(6988):158
Mitchell MW, Lundeen JS, Steinberg AM (2004) Super-Resolving Phase Measurements with a Multiphoton Entangled State. Nature 429(6988):139
Williams CP, Dowling JP (2001) Lithography Using Quantum Entangled Particles. U.S. Patent 6,252,665, June 26
Williams CP, Dowling JP, della Rossa G (2002) Lithography System Using Quantum Entangled Photons. U.S. Patent 6,480,283,November 12, 2002
Williams CP, Dowling (2003) JP Lithography Using Quantum Entangled Particles. U.S. Patent 6,583,881, June 24th 2003
Williams CP, Dowling JP, della Rossa G (2003) Lithography Using Quantum Entangled Particles. U.S. Patent 6,630,290, October 7th 2003
Brueck SRJ, Zaidi SH, Chen X, Zhang Z (1998) Interferometric Lithography: From Periodic Arrays to Arbitrary Patterns. Microelectron Eng 41–42:145–148
Lord Rayleigh (1879) Philos Mag 8:261
Born M, Wolf E (1980) Principles of Optics, Sec. 7.6.3., 6th ed. Pergamon Press, New York
Witzgall G, Vrijen R, Yablonovitch E (1998) Single Shot Two-Photon Exposure of a Commercial Photoresist for the Production of Three-Dimensional Structures. Opt Lett 23:22
Ullal CK, Maldovan M, Wohlgemuth M, White CA, Yang S, Thomas EL (2003) 3D Periodic Biocontinuous Structures Through Interference Lithography: A Level Set Approach. J Opt Soc Am A 20:948
Helstrom CW (1976) Quantum Detection and Estimation Theory. Academic Press, New York
Hong CK, Ou ZY, Mandel L (1987) Measurement of Sub-picosecond Time Intervals Between Two Photons by Interference. Phys Rev Lett 59(18):2044–2046
Milburn GJ (1989) Quantum Optical Fredkin Gate. Phys Rev Lett 62(18):2124–2127
D’Ariano GM, Maccone L, Paris MGA, Sacchi MF (2000) Optical Fock State Synthesizer. Phys Rev A 61:053817
Boyd RW (1999) J Mod Opt 46:367
Fiurásek J (2002) Conditional Generation of N-photon Entangled States of Light. Phys Rev A 65:053818
Zou X, Pahlke K, Mathis W (2001) Generation of Entangled States of Two Travelling Modes for Fixed Number of Photons. quant-ph/0110149
Kok P, Lee H, Dowling JP (2002) Creation of Large-Photon Number Path Entanglement Conditioned on Photodetection. Phys Rev A 65:052104
Gauß CF (1801) Disquisitiones Arithmeticae. Gerhard Fleischer, Leipzig
Gingrich RM, Kok P, Lee H, Vatan F, Dowling JP (2003) An All Linear Optical Quantum Memory Based on Quantum Error Correction. Phys Rev Lett 91:217901
See URL: http://www.microchem.com/products/su_eight.htm
See URLs http://chandra.harvard.edu/about/science_instruments3.html, http://space.mit.edu/CSR/hetg_info.html, http://nano-web.mit.edu/annual-report01/24.html
Farhoud M, Hwang MM, Smith HI, Bae JM, Youcef-Toumi K, Ross CA (1998) Fabrication of Large Area Nanostructured Magnets by Interferometric Lithography. IEEE Trans Magn 34:1087–1089
Hwang M, Savas TA, Farhoud M, Smith HI, Ross CA (1999) Magnetic Properties of 100-200nm Period Nanomagnet Arrays. Mat Res Soc, Symposium J, Patterned Magnetic Structures and Magnetoelectronics
Vavassori P, Metlushko V, Osgood III RM, Grimsditch M, Welp U, Crabtree G (1999) Large Area Submicron-Scale Periodic Magnetic Arrays. Mat Res Soc, Symposium J, Patterned Magnetic Structures and Magnetoelectronics
van Rijn CJM, Nijdam W, Kuiper S, Veldhuis GJ, van Wolferen H, Elwenspoek M (1999) Microsieves made with laser interference lithography for micro-filtration applications. J Micromech Microeng 9:170–172