Quantum information memory based on reconfigurable topological insulators by piezotronic effect

Nano Energy - Tập 60 - Trang 36-42 - 2019
Xin Guo1, Gongwei Hu1, Yaming Zhang1, Ruhao Liu1, Minjiang Dan1, Lijie Li2, Yan Zhang1,3,4
1School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
2Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK
3Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
4College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Tài liệu tham khảo

Wang, 2012, Progress in piezotronics and piezo‐phototronics, Adv. Mater., 24, 4632, 10.1002/adma.201104365 Wu, 2016, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nature Reviews Materials, 1, 16031, 10.1038/natrevmats.2016.31 Zhang, 2011, Fundamental theory of piezotronics, Adv. Mater., 23, 3004, 10.1002/adma.201100906 Zhang, 2012, Theory of piezo‐phototronics for light‐emitting diodes, Adv. Mater., 24, 4712, 10.1002/adma.201104263 Gao, 2007, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics, Nano Lett., 7, 2499, 10.1021/nl071310j Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005 Wang, 2006, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6, 2768, 10.1021/nl061802g Zhu, 2018, Piezotronic effect on rashba spin–orbit coupling in a ZnO/P3HT nanowire array structure, ACS Nano, 12, 1811, 10.1021/acsnano.7b08618 Tao, 2019, Thin film flexible/bendable acoustic wave devices: evolution, hybridization and decoupling of multiple acoustic wave modes, Surf. Coating. Technol., 357, 587, 10.1016/j.surfcoat.2018.10.042 Büyükköse, 2014, High-frequency acoustic charge transport in GaAs nanowires, Nanotechnology, 25, 10.1088/0957-4484/25/13/135204 Yang, 2010, Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect, ACS Nano, 4, 6285, 10.1021/nn1022878 Boxberg, 2010, Photovoltaics with piezoelectric core− shell nanowires, Nano Lett., 10, 1108, 10.1021/nl9040934 Zhang, 2012, Piezo-phototronics effect on nano/microwire solar cells, Energy Environ. Sci., 5, 6850, 10.1039/c2ee00057a Yang, 2011, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect, Nano Lett., 11, 4012, 10.1021/nl202619d Hu, 2017, Piezotronic transistor based on topological insulators, ACS Nano, 12, 779, 10.1021/acsnano.7b07996 Shi, 2013, Piezoelectric‐polarization‐enhanced photovoltaic performance in depleted‐heterojunction quantum‐dot solar cells, Adv. Mater., 25, 916, 10.1002/adma.201203021 Zhang, 2016, Piezophototronic effect enhanced luminescence of zinc oxide nanowires, Nano energy, 22, 533, 10.1016/j.nanoen.2016.02.039 Li, 2017, Simulation of wavelength selection using ZnO nanowires array, J. Appl. Phys., 121, 10.1063/1.4984830 Li, 2017, Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect, Nano Res, 10, 2527, 10.1007/s12274-017-1457-y Moore, 2010, The birth of topological insulators, Nature, 464, 194, 10.1038/nature08916 Hasan, 2010, Colloquium: topological insulators, Rev. Mod. Phys., 82, 3045, 10.1103/RevModPhys.82.3045 Brüne, 2011, Quantum Hall effect from the topological surface states of strained bulk HgTe, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.126803 Fu, 2007, Topological insulators in three dimensions, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.106803 Bernevig, 2006, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, 314, 1757, 10.1126/science.1133734 Kane, 2005, Quantum spin Hall effect in graphene, Phys. Rev. Lett., 95 Qi, 2011, Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057, 10.1103/RevModPhys.83.1057 König, 2007, Quantum spin Hall insulator state in HgTe quantum wells, Science, 318, 766, 10.1126/science.1148047 Miao, 2012, Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.186803 Zhang, 2013, Interface-induced topological insulator transition in GaAs/Ge/GaAs quantum wells, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.156402 Liu, 2014, Tuning Dirac states by strain in the topological insulator Bi 2 Se 3, Nat. Phys., 10, 294, 10.1038/nphys2898 Van Wees, 1988, Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett., 60, 848, 10.1103/PhysRevLett.60.848 Qi, 2010 Miao, 2012, Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.186803 Zhang, 2013, Interface-induced topological insulator transition in GaAs/Ge/GaAs quantum wells, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.156402 Pillarisetty, 2011, Academic and industry research progress in germanium nanodevices, Nature, 479, 324, 10.1038/nature10678 Landauer, 1957, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Dev., 1, 223, 10.1147/rd.13.0223 Landauer, 1987, Electrical transport in open and closed systems, Z. Phys. B Condens. Matter, 68, 217, 10.1007/BF01304229 Nakajima, 1958, On quantum theory of transport phenomena: steady diffusion, Prog. Theor. Phys., 20, 948, 10.1143/PTP.20.948 Ikeda, 1996 Zhang, 2011, Electrical switching of the edge channel transport in HgTe quantum wells with an inverted band structure, Phys. Rev. B, 83 Romeo, 2012, Electrical switching and interferometry of massive Dirac particles in topological insulator constrictions, Phys. Rev. B, 86, 10.1103/PhysRevB.86.165418 Krueckl, 2011, Switching spin and charge between edge states in topological insulator constrictions, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.086803 Bright, 1989, Bleustein–Gulyaev waves in gallium arsenide and other piezoelectric cubic crystals, J. Appl. Phys., 66, 1556, 10.1063/1.344416 Dan, 2018, High performance piezotronic logic nanodevices based on GaN/InN/GaN topological insulator, Nanomater. Energy, 10.1016/j.nanoen.2018.06.007 Groth, 2014, Kwant: a software package for quantum transport, New J. Phys., 16, 10.1088/1367-2630/16/6/063065 Wang, 2016, Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire, Adv. Mater., 28, 7234, 10.1002/adma.201601721 Yu, 2013, GaN nanobelt-based strain-gated piezotronic logic devices and computation, ACS Nano, 7, 6403, 10.1021/nn4026788 Hsieh, 2009, A tunable topological insulator in the spin helical Dirac transport regime, Nature, 460, 1101, 10.1038/nature08234 Nie, 2018, Piezotronic analog-to-digital converters based on strain-gated transistors, Nano energy, 46, 423, 10.1016/j.nanoen.2018.02.034 Tiwari, 1996, A silicon nanocrystals based memory, Appl. Phys. Lett., 68, 1377, 10.1063/1.116085 Chang, 2011, Developments in nanocrystal memory, Mater. Today, 14, 608, 10.1016/S1369-7021(11)70302-9