Quantum dots induce heat shock-related cytotoxicity at intracellular environment
Tóm tắt
Quantum dots (QDs) are semiconductor nanocrystals with unique optical properties. Different proteins or polymers are commonly bound to their surfaces to improve biocompatibility. However, such surface modifications may not provide sufficient protection from cytotoxicity due to photodegradation and oxidative degradation. In this study, the cytotoxic effects of QDs, CdTe, and CdSe/ZnS were investigated using cadmium-resistant cells. CdTe QDs significantly reduced cell viability, whereas, CdSe/ZnS treatment did not markedly decrease the cell number. CdTe QDs were cytotoxic in cadmium-resistant cells suggesting that internalized QDs degraded and cadmium ions contributed to the cytotoxic effects. CdTe QDs were consistently more cytotoxic than CdSe/ZnS QDs, but both QDs as well as cadmium ions activated heat shock protein 70B′ promoter. QDs themselves are likely to contribute to HSP70B′ promoter activation in cadmium-resistant cells, because CdSe/ZnS QDs do not release sufficient cadmium to activate this promoter.
Tài liệu tham khảo
Al-Hajaj N. A.; Moquin A.; Neibert K. D.; Soliman G. M.; Winnik F. M.; Maysinger D. Short ligands affect modes of QD uptake and elimination in human cells. ACS NANO 5: 4909–4918; 2011.
Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 22: 47–52; 2004.
Bruchez Jr. M.; Moronne M.; Gin P.; Weiss S.; Alivisatos P. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016; 1998.
Chan W. C. W.; Maxwell D. J.; Gao X.; Bailey R. E.; Han M.; Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13: 40–46; 2002.
Chen P.; Kanehira K.; Sonezaki S.; Taniguchi A. Detection of cellular response to titanium dioxide nanoparticle agglomerates by sensor cells using heat shock protein promoter. Biotechnol Bioeng 109: 3112–3118; 2012.
Cho S. J.; Maysinger D.; Jain M.; Roder B.; Hackbarth S.; Winnik F. M. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23: 1974–1980; 2007.
Derfus A. M.; Chan W. C. W.; Bhatia S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4: 11–18; 2004.
Feder M. E.; Hofmann G. E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 61: 243–282; 1999.
Fujishiro H.; Okugaki S.; Kubota K.; Fujiyama T.; Miyataka H.; Himeno S. The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells. J Appl Toxicol 29: 367–373; 2009.
Gorman A. M.; Heavey B.; Creagh E.; Cotter T. G.; Samali A. Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445: 98–102; 1999.
Hoshino A.; Fujioka K.; Oku T.; Suga M.; Sasaki Y. F.; Ohta T.; Yasuhara M.; Suzuki K.; Yamamoto K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4: 2163–2169; 2004.
Kato S.; Akagi T.; Kishida A.; Sugimura K.; Akashi M. Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis.2. Study of HSP 70 mRNA expression. J Biomater Sci Pol Ed 8: 809–814; 1997.
Kato S.; Akagi T.; Sugimura K.; Kishida A.; Akashi M. Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis III: Study of HSP 70; 90 and 47 mRNA expression. Biomaterials 19: 821–827; 1998.
Kato S.; Matsuyama T.; Serizawa T.; Kishida A.; Akashi M. HSP 47 and collagen mRNA expression in L929 cells adhered to lipid films. J Biomater Sci Pol Ed 12: 149–156; 2001.
Kiang J. G.; Tsokos G. C. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80: 183–201; 1998.
Li N.; Sioutas C.; Cho A.; Sxhmitz D.; Misra C.; Sempf J.; Wang M.; Oberley T.; Froines J.; Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 11: 455–460; 2003.
Linse S.; Cabaleiro-Lago C.; Cue W. F.; Lynch I.; Lindman S.; Thulin E.; Radford S. E.; Dawson K. A. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104: 8691–8696; 2007.
Lovrc J.; Cho S. J.; Winnik F. M.; Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12: 1227–1234; 2005b.
Lovric J.; Bazzi H. S.; Cuie Y.; Fortin G. R. A.; Winnik F. M.; Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83: 377–385; 2005a.
Ma Y. X.; Cao L.; Kawabata T.; Yoshino T.; Yang B. B.; Okada S. Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic Biol Med 25: 568–575; 1998.
Michalet X.; Pinaud F. F.; Bintolila L. A.; Tsay J. M.; Doose S.; Li J. J.; Sundaresan G.; Wu A. M.; Gambhir S. S.; Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–544; 2005.
Migita S.; Wada K. I.; Taniguchi A. Reproducible fashion of the HSP70B′ promoter-induced cytotoxic response on a live cell-based biosensor by cell cycle synchronization. Biotechnol Bioeng 107: 561–565; 2010.
Okuda-Shimazaki J.; Takaku S.; Kanehira K.; Sonezaki S.; Taniguchi A. Effects of titanium dioxide nanoparticle aggregate size on gene expression. Int J Mol Sci 11: 2382–2392; 2007.
Pansare V. J.; Hejazi S.; Faenza W. J.; Prud’homme R. K. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24: 812–827; 2012.
Peng C. W.; Tian Q.; Yang G. F.; Fang M.; Zhang Z. L.; Peng J.; Li Y.; Pang D. W. Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials 33: 5742–5752; 2012.
Qian J.; Wang D.; Cai F.; Zhan Q.; Wang Y.; He S. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 33: 4851–4860; 2012.
Rak-Raszewska A.; Marcello M.; Kenny S.; Edgar D.; Sée V.; Murray P. Quantum dots do not affect the behaviour of mouse embryonic stem cells and kidney stem cells and are suitable for short-term tracking. PLoS ONE 7: e32650; 2012.
Schlesinger M. J. Heat shock proteins. J Biol Chem 265: 12111–12114; 1990.
Shang W.; Nuffer J. H.; Dordick J. S.; Siegel R. W. Unfolding of rebonuclease A on silica nanoparticle surface. Nano Lett 7: 1991–1995; 2007.
Uchino T.; Tokunaga H.; Ando M.; Utsumi H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol Vitr 16: 629–635; 2002.
Wada K. I.; Taniguchi A.; Okano T. Highly sensitive detection of cytotoxicity using a modified HSP70B′ promoter. Biotechnol Bioeng 97: 871–876; 2007.
Wada K. I.; Taniguchi A.; Xu L. M.; Okano T. Rapid and highly sensitive detection of cadmium chloride induced cytotoxicity using the HSP70B′ promoter in live cells. Biotechnol Bioeng 92: 410–415; 2005.
Welch W. J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72: 1063–1081; 1992.
Winnik F. M.; Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46: 672–680; 2013.
Wu B. J.; Eingston R. E.; Morimoto R. I. Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci USA 83: 629–633; 1986.
Yanagiya T.; Imura N.; Kondo Y.; Himeno S. Reduced uptake and enhanced release of cadmium in cadmium-resistant metallothionein null fibroblasts. Life Sci 65: 177–182; 1999.