Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways

Nature Nanotechnology - Tập 11 Số 12 - Trang 1112-1119 - 2016
Dhiraj Bhatia1,2,3, Senthil Arumugam1, Michel Nasilowski4, Himanshu Joshi5, Christian Wunder1, Valérie Chambon1, Ved Prakash2,6, Chloé Grazon7, Brice Nadal7, Prabal K. Maiti5, Ludger Johannes1,3, Benoît Dubertret4, Yamuna Krishnan2,6
1Chimie biologique des membranes et ciblage thérapeutique
2Tata Institute of Fundamental Research, Bangalore
3Université Paris sciences et lettres
4Laboratoire de Physique et d'Etude des Matériaux (UMR 8213)
5Indian Institute of Science
6University of Chicago
7Nexdot

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kairdolf, B. A. et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6, 143–162 (2013).

You, C. et al. Self-controlled monofunctionalization of quantum dots for multiplexed protein tracking in live cells. Angew. Chem. Int. Ed. 49, 4108–4112 (2010).

Clarke, S. et al. Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett. 10, 2147–2154 (2010).

You, C. et al. Electrostatically controlled quantum dot monofunctionalization for interrogating the dynamics of protein complexes in living cells. ACS Chem. Biol. 8, 320–326 (2013).

Carstairs, H. M. J., Lymperopoulos, K., Kapanidis, A. N., Bath, J. & Turberfield, A. J. DNA monofunctionalization of quantum dots. ChemBioChem 10, 1781–1783 (2009).

Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008).

Farlow, J. et al. Formation of targeted monovalent quantum dots by steric exclusion. Nat. Methods 10, 1203–1205 (2013).

Bhatia, D. et al. Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. Int. Ed. 48, 4134–4137 (2009).

Pan, K. et al. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat. Commun. 5, 5578 (2014).

Zhang, C. et al. Exterior modification of a DNA tetrahedron. Chem. Commun. 46, 6792–6794 (2010).

Angell, C., Xie, S., Zhang, L. & Chen, Y. DNA nanotechnology for precise control over drug delivery and gene therapy. Small http://dx.doi.org/10.1002/smll.201502167 (2016).

Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

Surana, S., Bhatia, D. & Krishnan, Y. A method to study in vivo stability of DNA nanostructures. Methods 64, 94–100 (2013).

Edwardson, T. G. W., Carneiro, K. M. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).

McLaughlin, C. K. et al. Three-dimensional organization of block copolymers on ‘DNA-minimal’ scaffolds. J. Am. Chem. Soc. 134, 4280–4286 (2012).

Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotech. 7, 389–393 (2012).

Jaiswal, J. K. & Simon, S. M. Imaging single events at the cell membrane. Nat. Chem. Biol. 3, 92–98 (2007).

Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

Johannes, L., Parton, R. G., Bassereau, P. & Mayor, S. Building endocytic pits without clathrin. Nat. Rev. Mol. Cell Biol. 42, 1–11 (2015).

Carion, O., Mahler, B., Pons, T. & Dubertret, B. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat. Protoc. 2, 2383–2390 (2007).

Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

Cornell, W. D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

Santosh, M. & Maiti, P. K. Structural rigidity of paranemic crossover and juxtapose DNA nanostructures. Biophys. J. 101, 1393–1402 (2011).

Joshi, H., Dwaraknath, A. & Maiti, P. K. Structure, stability and elasticity of DNA nanotubes. Phys. Chem. Chem. Phys. 17, 1424–1434 (2014).

Maiti, P. K., Pascal, T. A., Vaidehi, N., Heo, J. & Goddard, W. A. Atomic-level simulations of seeman DNA nanostructures: the paranemic crossover in salt solution. Biophys. J. 90, 1463–1479 (2006).

Sabharanjak, S. & Mayor, S. Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev. 56, 1099–1109 (2004).

Furey, W. S. et al. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry 37, 2979–2990 (1998).

Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 45, 7414–7417 (2006).

Bhatia, D., Chakraborty, S., Mehtab, S. & Krishnan, Y. A method to encapsulate molecular cargo within DNA icosahedra. Methods Mol. Biol. 991, 65–80 (2013).

Lakshminarayan, R. et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16, 595–606 (2014).

Delacour, D. et al. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8, 379–388 (2007).

Römer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

Römer, W. et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).

Renard, H.-F. et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517, 493–496 (2015).

Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175–1187 (2008).

Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21 (2005).

Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

Wang, B., Kuo, J. & Granick, S. Bursts of active transport in living cells. Phys. Rev. Lett. 111, 1–16 (2013).

Bálint, Š., Verdeny Vilanova, I., Sandoval Álvarez, Á. & Lakadamyali, M. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl Acad. Sci. USA 110, 3375–3380 (2013).

Zajac, A. L., Goldman, Y. E., Holzbaur, E. L. F. & Ostap, E. M. Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr. Biol. 23, 1173–1180 (2013).

Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell. 6, 929–944 (1995).