Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sinh học lượng tử: Khám phá động lực học lượng tử trong các hệ sinh học
Tóm tắt
Trong những năm gần đây, con người đã mở rộng các khái niệm phát triển trong khoa học thông tin lượng tử để khám phá động lực học lượng tử trong các hệ sinh học. Sự tồn tại của độ nhất quán lượng tử trong một số quá trình sinh học đã được xác định trong một số thí nghiệm. Vai trò của độ nhất quán lượng tử và rối lượng tử đã được điều tra cẩn thận, cho thấy rằng hiệu ứng lượng tử là quan trọng trong các quá trình này mặc dù theo cách phức tạp hơn. Trong khi đó, những phát hiện này thúc đẩy sự phát triển của các phương pháp thí nghiệm mới để tiết lộ thêm các kịch bản sinh học trong đó hiệu ứng lượng tử tồn tại và đóng vai trò không tầm thường. Trong bài viết này, chúng tôi xem xét những tiến bộ mới nhất trong lĩnh vực sinh học lượng tử và thảo luận về các thách thức chính trong sự phát triển tiếp theo của sinh học lượng tử.
Từ khóa
#sinh học lượng tử #động lực học lượng tử #độ nhất quán lượng tử #rối lượng tử #thí nghiệm sinh họcTài liệu tham khảo
Schrödinger E. What is Life? Cambridge: Cambridge University Press, 1992
Davies P C W. Quantum Aspects of Life. London: Imperial College Press, 2008
Mohseni M, Omar Y, Engel G S, et al. Quantum Effects in Biology. Cambridge: Cambridge University Press, 2014
Huelga S F, Plenio M B. Vibrations, quanta and biology. Contemp Phys, 2013, 54: 181–207
Lambert N, Chen Y-N, Cheng Y-C, et al. Quantum biology. Nat Phys, 2013, 9: 10–18
Zurek W H. Decoherence and the transition from quantum to classical. Phys Today, 1991, 44: 36
Scholes G D, Fleming G R, laya-Castro A O, et al. Lessons from nature about solar light harvesting. Nat Chem, 2011, 3: 763–774
Adolphs J, Renger T. How proteins trigger excitation energy transfer in the FMO complex of green sulphur bacteria. Biophys J, 2006, 91: 2778–2797
Engel G S, Calhoun T R, Read E L, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 2007, 446: 782–786
Collini E, Wong C Y, Wilk K E, et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463: 644–647
Panitchayangkoon G, Hayesa D, Fransted K A, et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Nat Acad Sci USA, 2010, 107: 12766–12770
Panitchayangkoon G, Voronine D V, Abramavicius D, et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc Nat Acad Sci USA, 2011, 108: 20908–20912
Plenio M B, Huelga S F. Dephasing-assisted transport: quantum networks and biomolecules. New J Phys, 2008, 10: 113019
Mohseni M, Robentrost P, Lloyd S, et al. Environment-assisted quantum walks in photosynthetic energy transfer. J Chem Phys, 2008, 129: 176106
Lee H, Cheng Y-C, Fleming G R. Quantum coherence accelerating photosynthetic energy transfer. In: Proceedings of the 16th International Conference on Ultrafast Phenomena, Palazzo dei Congressi Stresa, 2008. 607–609
Rebentrost P, Mohseni M, Kassal I, et al. Environment-assisted quantum transport. New J Phys, 2009, 11: 033003
Ishizaki A, Fleming G R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc Nat Acad Sci USA, 2009, 106: 17255–17260
Renger T. Theory of excitation energy transfer: from structure to function. Photosynth Res, 2009, 102: 471–485
Wu J L, Liu F, Shen Y, et al. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations. New J Phys, 2010, 12: 105012
Hoyer S, Sarovar M, Whaley K B. Limits of quantum speedup in photosynthetic light harvesting. New J Phys, 2010, 12: 065041
Yang S, Xu D Z, Song Z, et al. Dimerization-assisted energy transport in light-harvesting complexes. J Chem Phys, 2010, 132: 234501
Yen T-C, Cheng Y-C. Electronic coherence effects in photosynthetic light harvesting. Proc Chem, 2011, 3: 211–221
Ghosh P K, Smirnov A Y, Nori F. Quantum effects in energy and charge transfer in an artificial photosynthetic complex. J Chem Phys, 2011, 134: 244103
Cui B, Zhang X Y, Yi X X. Quantum dynamics in light-harvesting complexes: beyond the single-exciton limit. arXiv:1106.4429
Li C-M, Lambert N, Chen Y-N, et al. Witnessing quantum coherence: from solid-state to biological systems. Sci Rep, 2012, 2: 885
Ringsmuth A K, Milburn G J, Stace T M. Multiscale photosynthetic and biomimetic excitation energy transfer. Nat Phys, 2012, 8: 562–567
Chin A W, Prior J, Rosenbach R, et al. Vibrational structures and long-lasting electronic coherence. Nat Phys, 2013, 9: 113–118
Qin M, Shen H Z, Yi X X. A multi-pathway model for photosynthetic reaction center. arXiv:1507.00001
Lim J, Palecek D, Caycedo-Soler F, et al. Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat Commun, 2015, 6: 7755
Wiltschko W, Traudt J, Gunturkun O, et al. Lateralization of magnetic compass orientation in a migratory bird. Nature, 2002, 419: 467–470
Ritz T, Thalau P, Phillips J B, et al. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature, 2004, 429: 177–180
Wiltschko R, Stapput K, Thalau P, et al. Directional orientation of birds by the magnetic field under different light conditions. J Roy Soc Interf, 2010, 7: 163–177
Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J, 2000, 78: 707–718
Ritz T, Wiltschko R, Hore P J, et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J, 2009, 96: 3451–3457
Ritz T. Quantum effects in biology: bird navigation. Proc Chem, 2011, 3: 262–275
Maeda K, Robinson A J, Henbest K B, et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Nat Acad Sci USA, 2012, 109: 4774–4779
Rodgers C T, Hore P J. Chemical magnetoreception in birds: the radical pair mechanism. Proc Nat Acad Sci USA, 2009, 106: 353–360
Ritz T, Ahmad M, Mouritsen H, et al. Photoreceptor-based magnetoreception: Optimal design of receptor molecules, cells, and neuronal processing. J Roy Soc Interf, 2010, 7: S135–S146
Schulten K, Swenberg C E, Weller A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z Phys Chem, 1978, 111: 1–5
Steiner U, Ulrich T. Magnetic field effects in chemical kinetics and related phenomena. Chem Rev, 1989, 89: 51–147
Maeda K, Henbest K B, Cintolesi F, et al. Chemical compass model of avian magnetoreception. Nature, 2008, 453: 387–390
Gauger E M, Rieper E, Morton J J L, et al. Sustained quantum coherence and entanglement in the avian compass. Phys Rev Lett, 2011, 106: 040503
Bandyopadhyay J N, Paterek T, Kaszlikowski D. Quantum coherence and sensitivity of avian magnetoreception. Phys Rev Lett, 2012, 109: 110502
Cai J M, Guerreschi G G, Briegel H J. Quantum control and entanglement in a chemical compass. Phys Rev Lett, 2010, 104: 220502
Yang L P, Ai Q, Sun C P. Generalized Holstein model for spin-dependent electron transfer reaction. Phys Rev A, 2012, 85: 032707
Cai J M, Plenio M B. Chemical compass model for avian magnetoreception as a quantum coherent device. Phys Rev Lett, 2013, 111: 230503
Turin L. A spectroscopic mechanism for primary olfactory reception. Chem Sens, 1996, 21: 773–791
Brookes J C, Hartoutsiou F, Horsfield A P, et al. Could humans recognize odor by phonon-assisted tunneling? Phys Rev Lett, 2007, 98: 038101