Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aerts, D. (2009a). Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. Foundations of Science, 14, 361–411.
Aerts, D. (2009c). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.
Aerts, D. (2010). A Potentiality and conceptuality interpretation of quantum mechancis. Philosophica, 83, 15–52.
Aerts, D., & Aerts, S. (1994). Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 1, 85–97.
Aerts, D., & D’Hooghe, B. (2009). Classical logical versus quantum conceptual thought: Examples in economics, decision theory and concept theory. In Proceedings of QI 2009-third international symposium on quantum interaction, Lecture Notes in Computer Science (pp. 128–142). Berlin: Springer.
Aerts, D., & D’Hooghe, B. (2010). A Potentiality and conceptuality interpretation of quantum mechancis. Philosophica, 83, 15–52.
Aerts, D., & Sassoli di Bianchi, M. (2015). Many-measurements or many-worlds? A dialogue. Foundations of Science, 20, 399–427.
Aerts, D., & Sassoli di Bianchi, M. (2017). Do spins have directions? Soft Computing, 21, 1483–1504.
Albert, D. Z., & Loewer, B. (1988). Interpreting the many worlds interpretation. Synthese, 77, 195–213.
Arenhart, J. R., & Krause, D. (2015). Potentiality and contradiction in quantum mechanics. In A. Koslow & A. Buchsbaum (Eds.), The road to universal logic (Vol. II, pp. 201–211). Berlin: Springer.
Arenhart, J. R., & Krause, D. (2016). Contradiction, Quantum mechanics, and the square of opposition. Logique et Analyse, 59, 273–281.
Bacciagaluppi, G. (1996). Topics in the modal interpretation of quantum mechanics. Ph.D. dissertation, University of Cambridge, Cambridge.
Bokulich, A. (2004). Open or llosed? Dirac, Heisenberg, and the relation between classical and quantum mechanics. Studies in History and Philosophy of Modern Physics, 35, 377–396.
Bub, J. (1997). Interpreting the quantum world. Cambridge: Cambridge University Press.
Curd, M., & Cover, J. A. (1998). Philosophy of science. The central issues. In Norton and Company (Eds.). Cambridge: Cambridge University Press.
da Costa, N., & de Ronde, C. (2016). Revisiting the applicability of metaphysical identity in quantum mechanics. Preprint. arXiv:1609.05361
da Costa, N., & de Ronde, C. (2013). The paraconsistent logic of quantum superpositions. Foundations of Physics, 43, 845–858.
D’Ariano, M. G., & Perinotti, P. (2016). Quantum theory is an information theory. The operational framework and the axioms. Foundations of Physics, 46, 269–281.
de Ronde, C. (2014). The problem of representation and experience in quantum mechanics. In D. Aerts, S. Aerts, & C. de Ronde (Eds.), Probing the meaning of quantum mechanics: Physical, philosophical and logical perspectives (pp. 91–111). Singapore: World Scientific.
de Ronde, C. (2015). Modality, potentiality and contradiction in quantum mechanics. In J.-Y. Beziau, M. Chakraborty, & S. Dutta (Eds.), New directions in paraconsistent logic (pp. 249–265). Berlin: Springer.
de Ronde, C. (2016a). Probabilistic knowledge as objective knowledge in quantum mechanics: Potential powers instead of actual properties. In D. Aerts, C. de Ronde, H. Freytes, & R. Giuntini (Eds.), Probing the meaning and structure of quantum mechanics: Superpositions, semantics, dynamics and identity (pp. 141–178). Singapore: World Scientific.
de Ronde, C. (2016b). Representational realism, closed theories and the quantum to classical limit. In R. E. Kastner, J. Jeknic-Dugic, & G. Jaroszkiewicz (Eds.), Quantum structural studies (pp. 105–136). Singapore: World Scientific.
de Ronde, C. (2017a). Causality and the modeling of the measurement process in quantum theory. Disputatio (forthcoming).
de Ronde, C. (2017b). Hilbert space quantum mechanics is contextual. (Reply to R. B. Griffiths). Cadernos de Filosofia (forthcoming). arXiv:1502.05396
de Ronde, C., Freytes, H., & Domenech, G. (2014). Interpreting the modal Kochen–Specker theorem: Possibility and many worlds in quantum mechanics. Studies in History and Philosophy of Modern Physics, 45, 11–18.
Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London, A455, 3129–3137.
DeWitt, B., & Graham, N. (1973). The many-worlds interpretation of quantum mechanics. Princeton: Princeton University Press.
Dieks, D. (1988). The formalism of quantum theory: An objective description of reality. Annalen der Physik, 7, 174–190.
Dieks, D. (2007). Probability in the modal interpretation of quantum mechanics. Studies in History and Philosophy of Modern Physics, 38, 292–310.
Dirac, P. A. M. (1974). The principles of quantum mechanics (4th ed.). London: Oxford University Press.
Dorato, M. (2006). Properties and dispositions: Some metaphysical remarks on quantum ontology. Proceedings of the AIP, 844, 139–157.
Einstein, A. (1916). Ernst Mach. Physikalische Zeitschrift, 17, 101–104.
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description be considered complete? Physical Review, 47, 777–780.
Everett, H. (1973). The theory of the universal wave function (Ph.D. Thesis, 1956). In Dewitt, B., & Graham, N. (Eds.), The many-worlds interpretation of quantum mechanics (pp. 3–140). Princeton: Princeton University Press.
Fuchs, C., Mermin, N., & Schack, R. (2014). An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82, 749.
Gao, S. (2015). What does it feel like to be in a quantum superposition? (preprint). http://philsci-archive.pitt.edu/11811/
Griffiths, R. B. (2002). Consistent quantum theory. Cambridge: Cambridge University Press.
Griffiths, R. B. (2013). Hilbert space quantum mechanics is non contextual. Studies in History and Philosophy of Modern Physics, 44, 174–181.
Hartle, J. (2015). Living in a quantum superposition (preprint). arXiv:1511.01550
Heisenberg, W. (1958). Physics and philosophy, world perspectives. London: George Allen and Unwin Ltd.
Heisenberg, W. (1971). Physics and beyond. New York: Harper & Row.
Heisenberg, W. (1973). Development of concepts in the history of quantum theory. In J. Mehra (Ed.), The physicist’s conception of nature (pp. 264–275). Dordrecht: Reidel.
Howard, D. (2010). Einstein’s philosophy of science. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Summer 2010 Edition). http://plato.stanford.edu/archives/sum2010/entries/einstein-philscience/ .
Jammer, M. (1993). Concepts of space. The history of theories of space in physics. New York: Dover.
Jansson, L. (2016). Everettian quantum mechanics and physical probability: Against the principle of ‘State Supervenience’. Studies in history and philosophy of modern physics, 53, 45–53.
Kastner, R. (2012). The transactional interpretation of quantum mechanics: The reality of possibility. Cambridge: Cambridge University Press.
Kastner, R. (2014). Einselection’ of pointer observables: The new H-theorem? Studies in History and Philosophy of Modern Physics, 48, 56–58.
Kastner, R. (2015). Understanding our unseen reality: Solving quantum riddles. London: Imperial College Press.
Kochen, S., & Specker, E. (1967). On the problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87. (Reprinted in Hooker, 1975, 293–328).
Kovachy, T., Asenbaum, P., Overstreet, C., Donnelly, C. A., Dickerson, S. M., Sugarbaker, A., et al. (2015). Quantum superposition at the half-metre scale. Nature, 528, 530–533.
Laplace, P.S. (1951). A philosophical essay on probabilities. Translated into English from the original French 6th ed. In F. W. Truscott, & F. L. Emory. New York: Dover Publications.
Mermin, D. (2015). Why QBism is not the Copenhagen interpretation and what John Bell might have thought of it (preprint). arXiv:1409.2454
Nimmrichter, S., & Hornberger, K. (2013). Macroscopicity of mechanical quantum superposition states. Physical Review Letters, 110, 160403.
Piron, C. (1983). Le realisme en physique quantique: une approche selon Aristote. In The concept of physical reality. Proceedings of a conference organized by the Interdisciplinary Research Group, University of Athens.
Rédei, M. (2012). Some historical and philosophical aspects of quantum probability theory and its interpretation. In D. Dieks, et al. (Eds.), Probabilities, laws, and structures (pp. 497–506). Berlin: Springer.
Saunders, S., Barrett, J., Kent, A., & Wallace, D. (Eds.). (2012). Many worlds? Everett, quantum theory, & reality. Oxford: Oxford University Press.
Schrödinger, E. (1935). The present situation in quantum mechanics. Naturwiss, 23, 807–812. Translated to English In J. A. Wheeler, W. H. Zurek (Eds.) Quantum Theory and Measurement, 1983, Princeton University Press, Princeton.
Sudbery, T. (2016). Time, chance and quantum theroy. In D. Aerts, C. de Ronde, H. Freytes, & R. Giuntini (Eds.), Probing the meaning and structure of quantum mechanics: Superpositions, semantics, dynamics and identity (pp. 324–339). Singapore: World Scientific.
Verelst, K., & Coecke, B. (1999). Early Greek thought and perspectives for the interpretation of quantum mechanics: Preliminaries to an ontological approach. In D. Aerts (Ed.), The Blue Book of Einstein meets Magritte (pp. 163–196). Dordrecht: Kluwer Academic Publishers.
Wallace, D. (2007). Quantum probability from subjective likelihood: Improving on Deutsch’s proof of the probability rule. Studies in the history and philosophy of modern physics, 38, 311–332.
Wallace, D. (2012). The emergent multiverse: Quantum theory according to the everett interpretation. Oxford: Oxford University Press.
Wheeler, J. A., & Zurek, W. H. (Eds.). (1983). Theory and measurement. Princeton: Princeton University Press.