Quantum $$ SL _2$$ , infinite curvature and Pitman’s 2M-X theorem
Tóm tắt
The classical theorem by Pitman states that a Brownian motion minus twice its running infimum enjoys the Markov property. On the one hand, Biane understood that Pitman’s theorem is intimately related to the representation theory of the quantum group
$${{\mathcal {U}}}_q\left( {\mathfrak sl}_2 \right) $$
, in the so-called crystal regime
$$q \rightarrow 0$$
. On the other hand, Bougerol and Jeulin showed the appearance of exactly the same Pitman transform in the infinite curvature limit
$$r \rightarrow \infty $$
of a Brownian motion on the hyperbolic space
$${{\mathbb {H}}}^3 = SL _2({{\mathbb {C}}})/ SU _2$$
. This paper aims at understanding this phenomenon by giving a unifying point of view. In order to do so, we exhibit a presentation
$${{\mathcal {U}}}_q^\hbar \left( {\mathfrak sl}_2 \right) $$
of the Jimbo–Drinfeld quantum group which isolates the role of curvature r and that of the Planck constant
$$\hbar $$
. The simple relationship between parameters is
$$q=e^{-r}$$
. The semi-classical limits
$$\hbar \rightarrow 0$$
are the Poisson–Lie groups dual to
$$ SL _2({{\mathbb {C}}})$$
with varying curvatures
$$r \in {{\mathbb {R}}}_+$$
. We also construct classical and quantum random walks, drawing a full picture which includes Biane’s quantum walks and the construction of Bougerol–Jeulin. Taking the curvature parameter r to infinity leads indeed to the crystal regime at the level of representation theory (
$$\hbar >0$$
) and to the Bougerol–Jeulin construction in the classical world (
$$\hbar =0$$
). All these results are neatly in accordance with the philosophy of Kirillov’s orbit method.
Tài liệu tham khảo
Alekseev, A., Arzhakova, E., Smirnova, D.: Stochastic differential equations for Lie group valued moment maps, vol. 1904, p. 06758 (2019)
Biane, P., Bougerol, P., O’Connell, N.: Littelmann paths and Brownian paths. Duke Math. J. 130(1), 127–167 (2005)
Biane, P., Bougerol, P., O’Connell, N.: Continuous crystal and Duistermaat–Heckman measure for Coxeter groups. Adv. Math. 221(5), 1522–1583 (2009)
Ballesteros, A., Celeghini, E., Del Olmo, M.A.: Poisson–Hopf limit of quantum algebras. J. Phys. A Math. Theor. 42(27), 275202 (2009)
Biane, P.: Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields 89(1), 117–129 (1991)
Biane, P.: Le théorème de Pitman, le groupe quantique SU\(_q(2)\), et une question de P. A. Meyer. In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, volume 1874 of Lecture Notes in Math., pp. 61–75. Springer, Berlin (2006)
Biane, P.: Introduction to random walks on noncommutative spaces. In: Quantum Potential Theory, pp. 61–116. Springer, Berlin (2008)
Biane, P.: From Pitman’s theorem to crystals. In: Noncommutativity and Singularities, volume 55 of Adv. Stud. Pure Math., pp. 1–13. Math. Soc. Japan, Tokyo (2009)
Bougerol, P., Jeulin, T.: Paths in Weyl chambers and random matrices. Probab. Theory Relat. Fields 124(4), 517–543 (2002)
Chhaibi, R.: Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion. Ph.D. thesis. Université Paris VI. arXiv preprint arXiv:1302.0902 (2013)
Chari, V., Pressley, A.N.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)
Diaconis, P., Miclo, L.: On times to quasi-stationarity for birth and death processes. J. Theor. Probab. 22(3), 558–586 (2009)
Drinfel’d, V.G.: Quantum groups. J. Sov. Math. 41(2), 898–915 (1988)
Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, vol. 3. Springer, Berlin (1990)
Heath, T.L., et al.: The Works of Archimedes. Dover Publication, Inc., Mineola (2002)
Helgason, S.: Groups & Geometric Analysis: Radon Transforms, Invariant Differential Operators and Spherical Functions, vol. 1. Academic Press, New York (1984)
Kassel, C.: Quantum Groups, vol. 155. Springer, Berlin (2012)
Kashiwara, M., Cochet, C.: Bases cristallines des groupes quantiques, volume 9. Société mathématique de France (2002)
Kirillov, A.A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc. (N.S.) 36(4), 433–488 (1999)
Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Integrability of Nonlinear Systems, pp. 104–170. Springer, Berlin (1997)
Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Springer, Berlin (2012)
Kassel, C., Turaev, V.: Biquantization of Lie bialgebras. Pac. J. Math. 195(2), 297–369 (2000)
Littelmann, P.: The path model for representations of symmetrizable Kac–Moody algebras. In: Proceedings of the International Congress of Mathematicians, pp. 298–308. Springer, Berlin (1995)
Littelmann, P.: Paths and root operators in representation theory. Ann. Math. 142, 499–525 (1995)
Lecouvey, C., Lesigne, E., Peigné, M.: Random walks in Weyl chambers and crystals. Proc. Lond. Math. Soc. (3) 104(2), 323–358 (2012)
Lecouvey, C., Lesigne, E., Peigné, M.: Conditioned random walks from Kac–Moody root systems. Trans. AMS (accepted), pp. 1–30 (2013) arXiv:1306.3082
Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)
Hiroyuki, M., Yukio, O.: Markov or non-Markov property of \(cM-X\) processes. J. Math. Soc. Jpn. 56(2), 519–540 (2004)
Nikeghbali, A.: An essay on the general theory of stochastic processes. Probab. Surv. 3, 345–412 (2006)
Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7(3), 511–526 (1975)
Prasolov, V.: Surveys in Modern Mathematics, vol. 321. Cambridge University Press, Cambridge (2005)
Pisier, G., Quanhua, X.: Non-commutative martingale inequalities. Commun. Math. Phys. 189(3), 667–698 (1997)
Pisier, G., Quanhua, X.: Non-commutative \(L^p\)-spaces. In: Handbook of the Geometry of Banach Space, vol. 2, pp. 1459–1517 (2003)
Rogers, L.C.G., Pitman, J.W.: Markov functions. Ann. Probab. 9(4), 573–582 (1981)
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293. Springer, Berlin (2013)
Sun, Y.: A new integral formula for Heckman–Opdam hypergeometric functions. Adv. Math. 289, 1157–1204 (2016)
Shepler, A0.V., Witherspoon, S.: Poincaré–Birkhoff–Witt theorems. In: Commutative Algebra and Noncommutative Algebraic Geometry, vol. I, pp. 259–290 (2015)
Vilenkin, N.J., Klimyk, A.U.: Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), vol. 75. Kluwer Academic Publishers Group, Dordrecht (1992). https://doi.org/10.1007/978-94-017-2881-2