Quantum Landauer erasure with a molecular nanomagnet

Nature Physics - Tập 14 Số 6 - Trang 565-568 - 2018
Rocco Gaudenzi1, Enrique Burzurı́1, S. Maegawa2, Herre S. J. van der Zant1, Fernando Luis3
1Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
2Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
3Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Instituto de Ciencia de Materiales de Aragón (ICMA), C.S.I.C.-Universidad de Zaragoza, Zaragoza, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

Jun, Y., Gavrilov, M. & Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601–190605 (2014).

Berut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

Hong, J., Lambson, B., Dhuey, S. & Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, 1501492–1501497 (2016).

Boechler, G. P., Whitney, J. M., Lent, C. S., Orlov, A. O. & Snider, G. L. Fundamental limits of energy dissipation in charge-based computing. Appl. Phys. Lett. 97, 103502–103504 (2010).

Lambson, B., Carlton, D. & Bokor, J. Exploring the thermodynamic limits of computation in integrated systems: Magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107, 010604–010607 (2011).

Gammaitoni, L., Chiuchiu, D., Madami, M. & Carlotti, G. Towards zero-power ICT. Nanotechnology 26, 222001–222010 (2015).

Bennett, C. H. The thermodynamics of computation - a review. Int. J. Theor. Phys. 21, 905–940 (1982).

Gerrits, T., van den Berg, H. A. M., Hohlfeld, J., Bar, L. & Rasing, T. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666–671 (2012).

Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, 1603117–1603122 (2017).

Lloyd, S. Quantum-mechanical Maxwell’s demon. Phys. Rev. A 56, 3374–3382 (1997).

Lesovik, G., Lebedev, A., Sadovskyy, I., Suslov, M. & Vinokur, V. H-theorem in quantum physics. Sci. Rep. 6, 32815–32821 (2016).

Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets Vol. 5 (Oxford Univ. Press, Oxford, 2006).

Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R. & Gatteschi, D. Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78, 4645–4648 (1997).

Burzurì, E. et al. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet. Phys. Rev. Lett 111, 057201–057205 (2013).

Burzurì, E. et al. Magnetic dipolar ordering and quantum phase transition in an Fe8 molecular magnet . Phys. Rev. Lett 107, 097203–097206 (2011).

Luis, F., Bartolomé, J. & Fernández, J. F. Resonant magnetic quantum tunneling through thermally activated states. Phys. Rev. B 57, 505–513 (1998).

Garanin, Da & Chudnovsky, E. M. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Phys. Rev. B 56, 11102–11118 (1998).

Leuenberger, M. N. & Loss, D. Spin relaxation in Mn12-acetate. Europhys. Lett. 46, 692–698 (1999).

Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Physica D 120, 188–195 (1998).

Lloyd, S. Ultimate physical limits to computation. Nature 406, 1047–1054 (2000).

Campbell, S. & Deffner, S. Trade-off between speed and cost in shortcuts to adiabaticity. Phys. Rev. Lett. 118, 100601–100607 (2017).