Quantum Ergodicity for Periodic Graphs

Springer Science and Business Media LLC - Tập 403 - Trang 1477-1509 - 2023
Theo McKenzie1,2, Mostafa Sabri3,4
1Harvard University, Cambridge, USA
2Stanford University, Stanford, USA
3Cairo University, Giza, Egypt
4New York University Abu Dhabi, Abu Dhabi, UAE

Tóm tắt

This article shows that for a large class of discrete periodic Schrödinger operators, most wavefunctions resemble Bloch states. More precisely, we prove quantum ergodicity for a family of periodic Schrödinger operators H on periodic graphs. This means that most eigenfunctions of H on large finite periodic graphs are equidistributed in some sense, hence delocalized. Our results cover the adjacency matrix on $$\mathbb {Z}^d$$ , the triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrödinger operators on $$\mathbb {Z}^d$$ . The theorem applies more generally to any periodic Schrödinger operator satisfying an assumption on the Floquet eigenvalues.

Tài liệu tham khảo

Anantharaman, N.: Quantum ergodicity on regular graphs. Commun. Math. Phys. 353, 633–690 (2017) Anantharaman, N., Ingremeau, M., Sabri, M., Winn, B.: Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization. Journal de Mathématiques Pures et Appliquées 151, 28–98 (2021) Anantharaman, N., Le Masson, E.: Quantum ergodicity on large regular graphs. Duke Math. J. 164, 723–765 (2015) Anantharaman, N., Sabri, M.: Quantum ergodicity on graphs: from spectral to spatial delocalization. Ann. Math. 189, 753–835 (2019) Anantharaman, N., Sabri, M.: Quantum ergodicity for the Anderson model on regular graphs. J. Math. Phys. 58, (2017) Anantharaman, N., Sabri, M.: Recent results of quantum ergodicity on graphs and further investigation. Ann. Fac. Sci. Toulouse Math. 28, 559–592 (2019) de Monvel, A. Boutet, Sabri, M.: Ballistic transport in periodic and random media, arXiv:2202.00940. Accepted in Operator Theory Advances and Applications Brooks, S., Le Masson, E., Lindenstrauss, E.: Quantum ergodicity and averaging operators on the sphere. Int. Math. Res. Not. 2016(19), 6034–6064 (2016) Chung, F., Yau, S.T.: Discrete Green’s functions. J. Combin. Theory Ser. A 91(1–2), 191–214 (2000) Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985) Fillman, J., Liu, W., Matos, R.: Irreducibility of the Bloch variety for finite-range Schrödinger operators. J. Funct. Anal. 283, 109670 (2022) Fillman, J., Liu, W., Matos, R.: Algebraic properties of the Fermi variety for periodic graph operators. arXiv:2305.06471 Gieseker, D., Knörrer, H., Trubowitz, E.: The geometry of algebraic Fermi curves, volume 14 of Perspectives in Mathematics. Academic Press (1993) Klimek, S., Kondracki, W.: Ergodic Properties of the Quantum Geodesic Flow on Tori. Math. Phys. Anal. Geom. 8, 173–186 (2005) Korotyaev, E., Saburova, N.: Schrödinger operators on periodic discrete graphs. J. Math. Anal. Appl. 420, 576–611 (2014) McKenzie, T.: The necessity of conditions for graph quantum ergodicity and Cartesian products with an infinite graph. Comptes Rendus. Mathématique 360, 399–408 (2022) Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. 4 : Analysis of Operators. Academic Press (1978) Sabri, M., Youssef, P.: Flat bands of periodic graphs. J. Math. Phys. 64 (2023) Simon, B.: Basic Complex Analysis, A Comprehensive Course in Analysis, Part 2A. AMS (2015) Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29, 181–182 (1974) Weichsel, P.M.: The Kronecker product of graphs. Proc. Amer. Math. Soc. 13, 47–52 (1962) Liu, W.: Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues. Geom. Funct. Anal. 32, 1–30 (2022) Liu, W.: Bloch varieties and quantum ergodicity for periodic graph operators, arXiv:2210.10532. To appear in J. Anal. Math Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)