Quantum Ergodicity for Periodic Graphs
Tóm tắt
This article shows that for a large class of discrete periodic Schrödinger operators, most wavefunctions resemble Bloch states. More precisely, we prove quantum ergodicity for a family of periodic Schrödinger operators H on periodic graphs. This means that most eigenfunctions of H on large finite periodic graphs are equidistributed in some sense, hence delocalized. Our results cover the adjacency matrix on
$$\mathbb {Z}^d$$
, the triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrödinger operators on
$$\mathbb {Z}^d$$
. The theorem applies more generally to any periodic Schrödinger operator satisfying an assumption on the Floquet eigenvalues.
Tài liệu tham khảo
Anantharaman, N.: Quantum ergodicity on regular graphs. Commun. Math. Phys. 353, 633–690 (2017)
Anantharaman, N., Ingremeau, M., Sabri, M., Winn, B.: Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization. Journal de Mathématiques Pures et Appliquées 151, 28–98 (2021)
Anantharaman, N., Le Masson, E.: Quantum ergodicity on large regular graphs. Duke Math. J. 164, 723–765 (2015)
Anantharaman, N., Sabri, M.: Quantum ergodicity on graphs: from spectral to spatial delocalization. Ann. Math. 189, 753–835 (2019)
Anantharaman, N., Sabri, M.: Quantum ergodicity for the Anderson model on regular graphs. J. Math. Phys. 58, (2017)
Anantharaman, N., Sabri, M.: Recent results of quantum ergodicity on graphs and further investigation. Ann. Fac. Sci. Toulouse Math. 28, 559–592 (2019)
de Monvel, A. Boutet, Sabri, M.: Ballistic transport in periodic and random media, arXiv:2202.00940. Accepted in Operator Theory Advances and Applications
Brooks, S., Le Masson, E., Lindenstrauss, E.: Quantum ergodicity and averaging operators on the sphere. Int. Math. Res. Not. 2016(19), 6034–6064 (2016)
Chung, F., Yau, S.T.: Discrete Green’s functions. J. Combin. Theory Ser. A 91(1–2), 191–214 (2000)
Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985)
Fillman, J., Liu, W., Matos, R.: Irreducibility of the Bloch variety for finite-range Schrödinger operators. J. Funct. Anal. 283, 109670 (2022)
Fillman, J., Liu, W., Matos, R.: Algebraic properties of the Fermi variety for periodic graph operators. arXiv:2305.06471
Gieseker, D., Knörrer, H., Trubowitz, E.: The geometry of algebraic Fermi curves, volume 14 of Perspectives in Mathematics. Academic Press (1993)
Klimek, S., Kondracki, W.: Ergodic Properties of the Quantum Geodesic Flow on Tori. Math. Phys. Anal. Geom. 8, 173–186 (2005)
Korotyaev, E., Saburova, N.: Schrödinger operators on periodic discrete graphs. J. Math. Anal. Appl. 420, 576–611 (2014)
McKenzie, T.: The necessity of conditions for graph quantum ergodicity and Cartesian products with an infinite graph. Comptes Rendus. Mathématique 360, 399–408 (2022)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. 4 : Analysis of Operators. Academic Press (1978)
Sabri, M., Youssef, P.: Flat bands of periodic graphs. J. Math. Phys. 64 (2023)
Simon, B.: Basic Complex Analysis, A Comprehensive Course in Analysis, Part 2A. AMS (2015)
Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29, 181–182 (1974)
Weichsel, P.M.: The Kronecker product of graphs. Proc. Amer. Math. Soc. 13, 47–52 (1962)
Liu, W.: Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues. Geom. Funct. Anal. 32, 1–30 (2022)
Liu, W.: Bloch varieties and quantum ergodicity for periodic graph operators, arXiv:2210.10532. To appear in J. Anal. Math
Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)