Quantum E(2) group and its Pontryagin dual

Letters in Mathematical Physics - Tập 23 - Trang 251-263 - 1991
S. L. Woronowicz1,2
1Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw, Warsaw, Poland
2ETH, Zürich, Switzerland

Tóm tắt

The quantum deformation of the group of motions of the plane and its Pontryagin dual are described in detail. It is shown that the Pontryagin dual is a quantum deformation of the group of transformations of the plane generated by translations and dilations. An explicit expression for the unitary bicharacter describing the Pontryagin duality is found. The Heisenberg commutation relations are written down.

Tài liệu tham khảo

Baaj, S. and Jungl, P., Théorie bivariant de Kasparow et opérateur non bornés dans les C *-modules hilbertiens, C. R. Acad. Sci. Paris, Série I, 296, 875–878 (1983), see also S. Baaj, Multiplicateur non bornés. Thése 3éme Cycle, Université Paris, VI, 11 Decembre 1980. Baaj, S. and Skandalis, G., Unitaires multiplicative et dualite pour les produits croisés de C *-algebres, Preprint, Université Paris VII. Celeghini, E., Giachetti, R., Sorace, E., and Tarlini, M., Three-dimensional quantum groups from contractions of SU(2) q J. Math. Physics 31(11), 2548 (1990). Landstad, M. B., Duality theory of covariant systems, Trans. Amer. Math. Soc. 248(2), 223–267 (1979). Pedersen, G. K., C *-Algebras and their Automorphism Groups, Academic Press, London, New York, San Francisco, 1979. Podleś, P. and Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys. 130, 381–431 (1990). Vaksman L. L. and Korogodskii L. I., The algebra of bounded functions on the quantum group of motions of the plane and q-analogs of Bessel functions, Dokl. Akad. Nauk. USSR 304(5). Woronowicz, S. L., Pseudospaces, pseudogroups and Pontryagin duality, Proceedings of the International Conference on Mathematical Physics, Lausanne 1979, Lecture Notes in Physics 116, Springer, Berlin, Heidelberg, New York. Woronowicz, S. L., Unbounded elements affiliated with C *-algebras and non-compact quantum groups, Comm. Math. Phys. 136, 399–432 (1991). Woronowicz, S. L., Operator equalities related to quantum E(2) group, to appear in Comm. Math. Phys. Woronowicz S. L. and Napiórkowski K., Operator theory in the C *-algebra framework, to appear in Rep. Math. Phys.