Quantum-Chemical Study of Stressed Polyethylene and Butadiene Rubber Chain Scission
Tóm tắt
The thermal decomposition of polyethylene and butadiene rubber chains in the presence of a tensile force acting along the axis of the molecule was simulated. The reaction of an isolated chain was considered. The chain models were the octane and 2,6-octadiene molecules. A deformation was introduced in the problem by fixing nonequilibrium distances between the terminal carbon atoms. The reaction coordinate (the middle C–C bond length R) was scanned at a fixed length of the molecule (L). That is, the potential energy surface section of the reaction was constructed at L = const. The reaction sensitivity to deformation was evaluated by B3LYP, LC-ωPBE, CCSD(T), CASSCF, and MP2 quantum-chemical calculations. All these calculations showed that the molecule elongated by ~1 Å for polyethylene, but shortened by 0.3–0.5 Å for 2,6-octadiene during chain scission. This means that the tensile deformation accelerates the decomposition of polyethylene, but decelerates the decomposition of butadiene rubber.
Tài liệu tham khảo
S. H. Johes and E. Whittle, Int. J. Chem. Kinet. 2, 479 (1970).
A. A. Popov and G. E. Zaikov, J. Macromol. Sci., Rev. Macromol. Chem. Phys. 27, 379 (1988).
B. E. Krisyuk, A. A. Popov, and E. T. Denisov, Vysokomol. Soedin. 30, 1736 (1988).
B. E. Krisyuk and V. V. Cheremisin, Vysokomol. Soedin. 34, 973 (1992).
B. E. Krisyuk, J. Mol. Struct.: THEOCHEM 677, 77 (2004).
A. A. Popov, N. Ya. Rappoport, and G. E. Zaikov, Oxidation of Oriented and Strained Polymers (Khimiya, Moscow, 1987) [in Russian].
A. A. Popov, S. K. Rakovskii, D. M. Shopov, and L. V. Ruban, Russ. Chem. Bull. 25, 958 (1976).
M. Sway, Indian J. Chem. 29, 748 (1990).
K. Al-Niami, K. A. Holbrook, and G. A. Oldershaw, J. Chem. Soc., Faraday Trans. 85, 1601 (1989).
N. J. Bunce and M. Hadley, Org. Chem. 39, 2271 (1974).
S. M. Handford-Styring and R. W. Walker, Phys. Chem. Chem. Phys. 3, 2043 (2001).
J. Ribas-Arino and D. Marx, Chem. Rev. 112, 5412 (2012).
M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).
A. M. Saitta and M. L. Klein, J. Chem. Phys. 111, 9434 (1999).
A. M. Saitta and M. L. Klein, J. Am. Chem. Soc. 121, 11827 (1999).
B. E. Krisyuk and E. V. Polianczyk, Int. J. Polym. Mater. 23, 1 (1993).
B. E. Krisyuk, Polymer Sci., Ser. A 39, 340 (1997).
S. N. Zhurkov and V. E. Korsukov, Sov. Phys. Solid State 15, 1379 (1964).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cassi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas., J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Rev. C01 (Gaussian Inc., Wallingford, CT, 2009).
A. A. Granovsky, Firefly, Vers. 8. http://classic.chem.msu.su/gran/firefly/index.html.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).
B. E. Krisyuk and E. A. Mamin, Butler. Soobshch. 49 (2), 25 (2017).
Y. Xiao-Qian, H. Xin-Juan, J. Haijun, X. Hong-Wei, and L. Yong-Wang, J. Phys. Chem. A 107, 9991 (2003).