Quantum Chemical Simulation of Polycondensation Processes of Vanadium Oxide Structures on Silica Surface
Tóm tắt
For the V–O–V bonds between closely spaced vanadium hydroxide groups, synthesized by the molecular layering during sequential treatment of the silica surface with VOCl3 and H2O vapors, a scheme of binding based on experimental data was proposed, and patterns of formation were predicted by quantum chemistry methods.
Tài liệu tham khảo
Malygin, А.А., Маlkov, А.А., and Sosnov, E A., Russ. Chem. Bull., 2017, vol. 66, no. 11, p. 1939. https://doi.org/10.1007/s11172-017-1971-9
Gervasinia, A., Carnitia, P., Keranen, J., Niinisto, L., and Aurouxb, A., Catal. Today, 2004, vol. 96, p. 187. https://doi.org/10.1016/j.cattod.2004.06.142
Hu, P., Chen, Y., Yan, X., Lang, W.-Z., and Guo, Y.-J., Ind. Eng. Chem. Res., 2019, vol. 58, no. 10, p. 4065. https://doi.org/10.1021/acs.iecr.8b06089
Chen, W., You, K., Wei, Y., Zhao, F., Chen, Z, Wu, J., Ai, Q.,and Luo, H., Ind. Eng. Chem. Res., 2021, vol. 60, no. 50, p. 18327. https://doi.org/10.1021/acs.iecr.1c03935
Hu, P., Lang, W.-Z., Yan, X., Chen, X.-F., and Guo, Y.-J., Appl. Catal. A: General, 2018, vol. 553, no. 5, p. 65. https://doi.org/10.1016/j.apcata.2018.01.014
Dai, Y., Gao, X., Wang, Q., Wan, X., Zhou, C., and Yang, Y., Chem. Soc. Rev., 2021, vol. 50, p. 5590. https://doi.org/10.1039/D0CS01260B
Carrero, C.A., Schloegl, R., Wachs, I.E., and Schomaecker, R., ACS Catal., 2014, vol. 4, p. 3357. https://doi.org/10.1021/cs5003417
Hamilton, N., Wolfram, T., Müller, G.T., Hävecker, M., Kröhnert, J., Carrero, C., Schomäcker, R., Trunschke, A., and Schlögl, R., Catal. Sci. Technol., 2012, vol. 2, p. 1346. https://doi.org/10.1039/C2CY00541G
Strunk, J., Bañares, M.A., and Wachs, I.E., Top. Catal., 2017, vol. 60, p.1577. https://doi.org/10.1007/s11244-017-0841-x
Lee, E.L. and Wachs, I.E., J. Phys. Chem. C, 2007, vol. 111, p. 14410. https://doi.org/10.1021/jp0735482
Luiz, H.V., Luiz, G.P., Thiago, F.C., Sandra, H.P., Celso, V.S., and Leandro, M., J. Mol. Catal., 2018, vol. 458, p. 161. https://doi.org/10.1016/j.mcat.2017.11.027
Malygin, A.A. and Dubrovenskii, S.D., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 643. https://doi.org/10.1134/S1070363210030448
Malkov, A.A. and Malygin, A.A., Russ. J. Phys. Chem., 2014, vol. 88, no. 3, p. 530. https://doi.org/10.1134/S0036024414030145
Keränen, J., Auroux, A., Ekb, S., and Niinistö, L., Appl. Catal. A: General, 2002, vol. 228, nos. 1–2, p. 213. https://doi.org/10.1016/S0926-860X(01)00975-9
Keränen, J., Guimon, C., Iiskola, E., Auroux, A., and Niinistö, L., J. Phys. Chem. B, 2003, vol. 107, no. 39, p. 10773. https://doi.org/10.1021/jp030385i
Sreedhara, M.B., Ghatak, J., Bharath, B., and Rao, C.N.R., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 3, p. 3178. https://doi.org/10.1021/acsami.6b14882
Rice, G.L. and Scott, S.L., Langmuir, 1997, vol. 13, p. 1545. https://doi.org/10.1021/la960679d
Drozdov, E.O., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2020, vol. 90, no. 5, p. 880. https://doi.org/10.1134/S1070363220050217
Pedersen, H. and Elliott, S.D., Theor. Chem. Acc., 2014, vol. 133, p. 1. https://doi.org/10.1007/s00214-014-1476-7
Weckman, T. and Laasone, K., Phys. Chem. Chem. Phys., 2015, no. 17(26), p.17322. https://doi.org/10.1039/C5CP01912
Weckman, T. and Laasone, K., J. Phys. Chem., 2018, vol. 122, no. 14, p.7685. https://doi.org/10.1021/acs.jpcc.7b11469
Weckman, T. and Laasone, K., J. Phys. Chem., 2016, vol. 120, no. 38. https://doi.org/10.1021/acs.jpcc.6b06141
Paez–Ornelas, J.I., Fernandez-Escamilla, H.N., Borbon-Nunez, H.A., Tiznado, H., Takeuchib, N., and Guerrero-Sanchez, J., Chem. Chem. Phys., 2021, no. 23, p. 3467. https://doi.org/10.1039/D0CP05283C
Patwardhan, S., Cao, D.H., Schatz, G.C., and Martinson, A.B.F., ACS Appl. Energy Mater., 2019, vol. 2, no. 7, p. 4618. https://doi.org/10.1021/acsaem.8b02202
Gao, X. and Wachs, I.E., Topics in Catal., 2002, vol. 18, p. 243. https://doi.org/10.1023/A:1013842722877
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2009.
Becke, A., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913
Rassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C., and Curtiss, L.A., J. Comp. Chem., 2001, vol. 22, p. 976. https://doi.org/10.1002/jcc.1058