Quantum-Chemical Calculations of the Geometric Structures and Electronic Spectra of Phthalocyanines MgPc and H2Pc and Their β-Octaphenyl Derivatives

Journal of Applied Spectroscopy - Tập 85 - Trang 829-839 - 2018
V. A. Kuzmitsky1, D. I. Volkovich2, L. L. Gladkov3, K. N. Solovyov2
1University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus, Minsk, Belarus
2B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
3Belarusian State Academy of Communications, Minsk, Belarus

Tóm tắt

Geometric structures of phthalocyanines (MgPc, H2Pc) and their β-octaphenyl derivatives (MgPcPh8, H2PcPh8) were calculated by the DFT PBE/TZVP method; excited electronic states, by the modifi ed INDO/Sm method. An examination of the bond lengths taking into account data for porphyrazines MgTAP and H2TAP showed that the weight of the internal 16-atom macroheterocycle in the electronic structures of MgPc and MgPcPh8 increased as compared to MgTAP whereas the contribution of the 18-atom azacyclopolyene of the free bases H2Pc and H2PcPh8 decreased as compared to H2TAP. The two lowest unoccupied MOs and highest occupied MO of the examined phthalocyanines were 70% localized on the internal 16-atom macrocycle (INDO/Sm data). Filled MOs of the next lowest energy had strong mixing of the π-AOs of the 16-atom macrocycle with π-MOs of annelated benzene rings (MgPc and H2Pc) and also with π-MOs of the phenyl rings (MgPcPh8 and H2PcPh8). The Q-state energies calculated by INDO/Sm agreed with the experimental data within 200–400 cm–1. Several ππ*-transitions characterized by local excitation of the 16-atom macrocycle and electron transfer between the 16-atom ring and the benzene rings were mainly responsible for the observed broad absorption spectrum of the phthalocyanines in the range 27,000–37,000 cm–1 (Soret band). The two strongest calculated ππ*-transitions in this range agreed qualitatively with the experimental ones. However, the calculated energy was overestimated by an average of ~3000 cm–1. The calculated energy of the strongest transition for MgPcPh8 corresponded well with the experimental Soret band maximum (overestimated by only 900 cm–1).

Tài liệu tham khảo

V. A. Kuz’mitskii and D. I. Volkovich, Zh. Prikl. Spektrosk., 75, No. 1, 28–35 (2008) [V. A. Kuzmitsky and D. I. Volkovich, J. Appl. Spectrosc., 75, 27–35 (2008)].

D. I. Volkovich, V. A. Kuz’mitskii, and P. A. Stuzhin, Zh. Prikl. Spektrosk., 75, No. 5, 606–622 (2008) [D. I. Volkovich, V. A. Kuzmitsky, and P. A. Stuzhin, J. Appl. Spectrosc., 75, 621–636 (2008)].

V. N. Knyukshto, V. A. Kuz’mitskii, E. A. Borisevich, D. I. Volkovich, A. S. Bubnova, P. A. Stuzhin, and K. N. Solov′ev, Zh. Prikl. Spektrosk., 76, No. 3, 365–375 (2009) [V. N. Knyukshto, V. A. Kuzmitsky, E. A. Borisevich, D. I. Volkovich, A. S. Bubnova, P. A. Stuzhin, and K. N. Solovyov, J. Appl. Spectrosc., 76, 341–351 (2009)].

K. N. Solovyov, P. A. Stuzhin, V. A. Kuzmitsky, D. I. Volkovich, V. N. Knyukshto, E. A. Borisevich, and A. Ul-Haque, Makrogeterotsikly/Macroheterocycles, 3, 51–62 (2010).

V. N. Knyukshto, D. I. Volkovich, L. L. Gladkov, V. A. Kuz’mitskii, A. Ul-Haque, I. A. Popkova, P A. Stuzhin, and K. N. Solov’ev, Opt. Spektrosk., 113, 501–517 (2012).

D. I. Volkovich, L. L. Gladkov, V. A. Kuz’mitskii, and K. N. Solov′ev, Zh. Prikl. Spektrosk., 78, No. 2, 171–180 (2011) [D. I. Volkovich, L. L. Gladkov, V. A. Kuzmitsky, and K. N. Solovyov, J. Appl. Spectrosc., 78, 154–164 (2011)].

P. P. Pershukevich, D. I. Volkovich, L. L. Gladkov, S. V. Dudkin, A. P. Stupak, V. A. Kuz’mitskii, E. A. Makarova, and K. N. Solov’ev, Opt. Spektrosk., 117, 743–761 (2014).

D. I. Volkovich, P. P. Pershukevich, L. L. Gladkov, S. V. Dudkin, V. A. Kuz’mitskii, E. A. Makarova, and K. N. Solov′ev, Effect of Annelation of Benzene Rings on the Photophysics and Electronic Structure of Tetraazachlorins [in Russian], Preprint No. 750, B. I. Stepanov Inst. Phys., Minsk (2015).

P. P. Pershukevich, D. I. Volkovich, L. L. Gladkov, S. V. Dudkin, V. A. Kuz’mitskii, E. A. Makarova, and K. N. Solov’ev, Opt. Spektrosk., 123, 518–535 (2017).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).

R. K. Chaudhuri, K. R. Freed, S. Chattopadhyay, and U. S. Mahapatra, J. Chem. Phys., 135, 084118-1–084118-10 (2011).

V. N. Nemykin, S. V. Dudkin, F. Dumoulin, C. Hirel, A. G. Gurek, and V. Ahsen, ARKIVOC, No. 1, 142–204 (2014).

T. V. Dubinina, K. V. Paramonova, S. A. Trashin, N. E. Borisova, L. G. Tomilova, and N. S. Zefirov, Dalton Trans., 43, 2799–2809 (2014).

D. N. Laikov, Chem. Phys. Lett., 281, 151–156 (1997).

D. N. Laikov, Development of an Economical Approach to the Calculation of Molecules by the Density Functional Method and Its Application to the Solution of Complicated Chemical Problems, Candidate Dissertation, Moscow (2000).

L. L. Gladkov, V. V. Gromak, and V. K. Konstantinova, Zh. Prikl. Spektrosk., 74, No. 3, 296–299 (2007) [L. L. Gladkov, V. V. Gromak, and V. K. Konstantinova, J. Appl. Spectrosc., 74, 328–332 (2007)].

L. L. Gladkov and V. V. Gromak, Zh. Prikl. Spektrosk., 79, No. 6, 862–867 (2012) [L. L. Gladkov and V. V. Gromak, J. Appl. Spectrosc., 79, 854–860 (2012)].

V. A. Kuz’mitskii, Excited Electronic States of Metalloporphyphin Dimers by the SCF MO LCAO Method, Preprint No. 186, Inst. Phys. AS BSSR, Minsk (1979).

A. V. Luzanov, Usp. Khim., 49, 2086–2117 (1980).

L. Gajda, T. Kupka, and M. A. Broda, Struct. Chem., 29, 667–679 (2018).

M.-S. Liao and S. Scheiner, J. Chem. Phys., 114, 9780–9791 (2001).

S. G. Semenov and M. E. Bedrina, Zh. Obshch. Khim., 79, 1382–1389 (2009).

B. Assmann, G. Ostendorp, G. Lehmann, and H. Homborg, Z. Anorg. Allg. Chem., 622, 1085–1096 (1996).

C. Murray, N. Dozova, J. G. McCaffrey, S. Fitzgerald, N. Shafizadeh, and C. Crepin, Phys. Chem. Chem. Phys., 12, 10406–10422 (2010).

S. Matsumoto, K. Matsuhama, and J. Mizuguchi, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 55, 131–133 (1999).

Y. B. Vysotsky, V. A. Kuzmitsky, and K. N. Solovyov, Theor. Chim. Acta, 59, 467–485 (1981).

M. Gouterman, J. Mol. Spectrosc., 6, 138–163 (1961).

N. Kobayashi, S.-I. Nakajima, H. Ogata, and T. Fukuda, Chem. Eur. J., 10, 6294–6312 (2004).

K. Toyota, J. Hasegawa, and H. Nakatsuji, J. Phys. Chem. A, 101, 446–451 (1997).

J. Berkowitz, J. Chem. Phys., 70, 2819–2829 (1979).

V. Novakova, P. Reimerova, J. Svec, D. Suchan, M. Miletin, H. M. Rhoda, V. N. Nemykin, and P. Zimcik, Dalton Trans., 44, 13220–13233 (2015).

R. P. Linstead and M. Whalley, J. Chem. Soc., 4839–4846 (1952).

A. B. P. Lever, in: H. J. Emeleus and A. G. Sharpe (Eds.), Advances in Inorganic Chemistry and Radiochemistry, 7, 27–114 (1965).

E. A. Makarova, G. V. Koroleva, and E. A. Luk’yanets, Zh. Org. Khim., 69, 1356–1361 (1999).