Quantitative proteomic analysis of ahpC/F and katE and katG knockout Escherichia coli—a useful model to study endogenous oxidative stress

Springer Science and Business Media LLC - Tập 105 Số 6 - Trang 2399-2410 - 2021
Feng Liu1, Rui Min1, Jie Hong1, Guangqin Cheng1, Yongqiang Zhang1, Yulin Deng1
1School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093. https://doi.org/10.1093/bioinformatics/btp101

Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461. https://doi.org/10.1146/annurev.micro.54.1.439

Collet JF, Messens J (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13(8):1205–1216. https://doi.org/10.1089/ars.2010.3114

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. https://doi.org/10.1074/mcp.M113.031591

Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling - lessons from a small thiol. Ann N Y Acad Sci 973:488–504. https://doi.org/10.1111/j.1749-6632.2002.tb04690.x

Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17. https://doi.org/10.1038/nchembio.1416

Ezraty B, Gennaris A, Barras F, Collet JF (2017) Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15(7):385–396. https://doi.org/10.1038/nrmicro.2017.26

Greenberg JT, Demple B (1989) A global response induced in Escherichia-Coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol 171(7):3933–3939. https://doi.org/10.1128/jb.171.7.3933-3939.1989

Hall A, Nelson K, Poole LB, Karplus PA (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 15(3):795–815. https://doi.org/10.1089/ars.2010.3624

Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454. https://doi.org/10.1038/nrmicro3032

Khademian M, Imlay JA (2017) Escherichia coli cytochrome c peroxidase is a respiratory oxidase that enables the use of hydrogen peroxide as a terminal electron acceptor. Proc Natl Acad Sci U S A 114(33):E6922–E6931. https://doi.org/10.1073/pnas.1701587114

Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. https://doi.org/10.1093/bioinformatics/btq054

Mendoza-Chamizo B, ner-Olesen A, Charbon G (2018) Coping with reactive oxygen species to ensure genome stability in Escherichia coli. Genes-basel 9(11). https://doi.org/10.3390/genes9110565

Messner KR, Imlay JA (2002) In vitro quantitation of biological superoxide and hydrogen peroxide generation. Methods Enzymol 349:354–361. https://doi.org/10.1016/S0076-6879(02)49351-2

Nunoshiba T, Obata F, Boss AC, Oikawa S, Mori T, Kawanishi S, Yamamoto E (1999) Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J Biol Chem 274(49):34832–34837. https://doi.org/10.1074/jbc.274.49.34832

Panek HR, O'Brian MR (2004) KatG is the primary detoxifier of hydrogen peroxide produced by aerobic metabolism in Bradyrhizobium japonicum. J Bacteriol 186(23):7874–7880. https://doi.org/10.1128/Jb.186.23.7874-7880.2004

Park S, You XJ, Imlay JA (2005) Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proc Natl Acad Sci U S A 102(26):9317–9322. https://doi.org/10.1073/pnas.0502051102

Rodriguez-Rojas A, Kim JJ, Johnston PR, Makarova O, Eravci M, Weise C, Hengge R, Rolff J (2020) Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet 16(3):1553–7404. https://doi.org/10.1371/journal.pgen.1008649

Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185(7):2236–2242. https://doi.org/10.1128/Jb.185.7.2236-2242.2003

Seaver LC, Imlay JA (2001a) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183(24):7173–7181. https://doi.org/10.1128/Jb.183.24.7173-7181.2001

Seaver LC, Imlay JA (2001b) Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183(24):7182–7189. https://doi.org/10.1128/Jb.183.24.7182-7189.2001

Singh R, Lemire J, Mailloux RJ, Appanna VD (2008) A novel strategy involved anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One 3(7):e2682. https://doi.org/10.1371/journal.pone.0002682

Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJJ (2017) Microbial antioxidant defense enzymes. Microb Pathog 110:56–65. https://doi.org/10.1016/j.micpath.2017.06.015

Tamarit J, Cabiscol E, Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273(5):3027–3032. https://doi.org/10.1074/jbc.273.5.3027

Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15(6):319–326. https://doi.org/10.1016/j.tcb.2005.04.003

Varghese S, Wu A, Park S, Imlay KRC, Imlay JA (2007) Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol Microbiol 64(3):822–830. https://doi.org/10.1111/j.1365-2958.2007.05701.x

Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183(15):4562–4570. https://doi.org/10.1128/Jb.183.15.4562-4570.2001