Quantitative prediction of individual cognitive flexibility using structural MRI
Tóm tắt
Cognitive flexibility, a core dimension of executive functions, refers to one’s ability to switch between multiple tasks and sets in a quick and flexible manner. However, whether objective neuroimaging can be used to quantitatively predict cognitive flexibility at the individual level remains largely unexplored. High-resolution magnetic resonance imaging data of 100 healthy young participants from the Human Connectome Project (HCP) dataset were used to calculate gray matter volume (GMV). Cognitive flexibility was assessed by the Dimensional Change Card Sort Test (DCCS). Using a multivariate machine learning technique known as relevance vector regression (RVR), we examined the relationship between GMV and cognitive flexibility performance. We found that the application of RVR to GMV allowed quantitative prediction of the DCCS scores with statistically significant accuracy (correlation = 0.41, P = 0.0001; mean squared error = 73.35, P = 0.0001). Accurate prediction was mainly based on GMV in the temporal regions. In addition, a univariate approach also revealed an inverse association between DCCS scores and GMV in the temporal areas. Our findings provide preliminary support to the development of neuroimaging techniques as a useful means to inform the cognitive assessment of individuals. Furthermore, the significant contribution of temporal regions suggests the prominent role of temporal cortex morphology in individual differences in cognitive flexibility.
Tài liệu tham khảo
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38, 95–113.
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26, 839–851.
Badre, D., & Wagner, A. D. (2006). Computational and neurobiological mechanisms underlying cognitive flexibility. Proceedings of the National Academy of Sciences of the United States of America, 103, 7186–7191.
Barbey, A. K., Colom, R., & Grafman, J. (2013). Architecture of cognitive flexibility revealed by lesion mapping. Neuroimage, 82, 547–554.
Bell, A. H., Hadj-Bouziane, F., Frihauf, J. B., Tootell, R. B., & Ungerleider, L. G. (2009). Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. Journal of Neurophysiology, 101, 688–700.
Binney, R. J., Embleton, K. V., Jefferies, E., Parker, G. J., & Ralph, M. A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cerebral Cortex, 20, 2728–2738.
Brammer, M. (2009). The role of neuroimaging in diagnosis and personalized medicine--current position and likely future directions. Dialogues in Clinical Neuroscience, 11, 389–396.
Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., Zhang, Q., & Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102(Pt 2), 474–483.
Chen, X., Lu, B., & Yan, C. G. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39, 300–318.
Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Mechanisms of cognitive set flexibility in Parkinson's disease. Brain, 124, 2503–2512.
Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. The Journal of Neuroscience, 22, 4563–4567.
Cools, R., Clark, L., & Robbins, T. W. (2004). Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. The Journal of Neuroscience, 24, 1129–1135.
Davis, J. C., Marra, C. A., Najafzadeh, M., & Liu-Ambrose, T. (2010). The independent contribution of executive functions to health related quality of life in older women. BMC Geriatrics, 10, 16.
Dennis, J. P., & Vander Wal, J. S. (2010). The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cognitive Therapy and Research, 34, 241–253.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.
Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.
Engel de Abreu, P. M., Abreu, N., Nikaedo, C. C., Puglisi, M. L., Tourinho, C. J., Miranda, M. C., Befi-Lopes, D. M., Bueno, O. F., & Martin, R. (2014). Executive functioning and reading achievement in school: A study of Brazilian children assessed by their teachers as "poor readers". Frontiers in Psychology, 5, 550.
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.
Genet, J. J., & Siemer, M. (2011). Flexible control in processing affective and non-affective material predicts individual differences in trait resilience. Cognition & Emotion, 25, 380–388.
Gershon, R. C., Wagster, M. V., Hendrie, H. C., Fox, N. A., Cook, K. F., & Nowinski, C. J. (2013). NIH toolbox for assessment of neurological and behavioral function. Neurology, 80, S2–S6.
Goel, V., Gold, B., Kapur, S., & Houle, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293–302.
Goswami, U. (2004). Neuroscience and education. The British Journal of Educational Psychology, 74, 1–14.
Green, S., Ralph, M. A., Moll, J., Stamatakis, E. A., Grafman, J., & Zahn, R. (2010). Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation. Neuroimage, 52, 1720–1726.
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.
Gruner, P., & Pittenger, C. (2017). Cognitive inflexibility in obsessive-compulsive disorder. Neuroscience, 345, 243–255.
Halgren, E., Dale, A. M., Sereno, M. I., Tootell, R. B., Marinkovic, K., & Rosen, B. R. (1999). Location of human face-selective cortex with respect to retinotopic areas. Human Brain Mapping, 7, 29–37.
Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. Neuroimage, 22, 676–687.
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.
Hodes, R. J., Insel, T. R., & Landis, S. C. (2013). The NIH toolbox: Setting a standard for biomedical research. Neurology, 80, S1.
Hou, Z., Sui, Y., Song, X., & Yuan, Y. (2016). Disrupted interhemispheric synchrony in default mode network underlying the impairment of cognitive flexibility in late-onset depression. Frontiers in Aging Neuroscience, 8, 230.
Johnson, M. (1997). Developmental cognitive neuroscience. Cambridge: Blackwell.
Kaas, J. H., & Hackett, T. A. (1999). 'What' and 'where' processing in auditory cortex. Nature Neuroscience, 2, 1045–1047.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997a). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302–4311.
Kanwisher, N., Woods, R. P., Iacoboni, M., & Mazziotta, J. C. (1997b). A locus in human extrastriate cortex for visual shape analysis. Journal of Cognitive Neuroscience, 9, 133–142.
Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136, 849–874.
Kim, C., Johnson, N. F., Cilles, S. E., & Gold, B. T. (2011). Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. The Journal of Neuroscience, 31, 4771–4779.
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., & Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60, 1126–1141.
Lambon Ralph, M. A. (2014). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society of London Series B, Biological sciences, 369, 20120392.
Lange, F., Lange, C., Joop, M., Seer, C., Dengler, R., Kopp, B., & Petri, S. (2016a). Neural correlates of cognitive set shifting in amyotrophic lateral sclerosis. Clinical Neurophysiology, 127, 3537–3545.
Lange, F., Seer, C., Loens, S., Wegner, F., Schrader, C., Dressler, D., Dengler, R., & Kopp, B. (2016b). Neural mechanisms underlying cognitive inflexibility in Parkinson's disease. Neuropsychologia, 93, 142–150.
Lange, F., Vogts, M. B., Seer, C., Furkotter, S., Abdulla, S., Dengler, R., Kopp, B., & Petri, S. (2016c). Impaired set-shifting in amyotrophic lateral sclerosis: An event-related potential study of executive function. Neuropsychology, 30, 120–134.
Leber, A. B., Turk-Browne, N. B., & Chun, M. M. (2008). Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proceedings of the National Academy of Sciences of the United States of America, 105, 13592–13597.
Lee, K., Bull, R., & Ho, R. M. (2013). Developmental changes in executive functioning. Child Development, 84, 1933–1953.
Leung, R. C., & Zakzanis, K. K. (2014). Brief report: Cognitive flexibility in autism spectrum disorders: A quantitative review. Journal of Autism and Developmental Disorders, 44, 2628–2645.
Li, Y., Grabell, A. S., Wakschlag, L. S., Huppert, T. J., & Perlman, S. B. (2017). The neural substrates of cognitive flexibility are related to individual differences in preschool irritability: A fNIRS investigation. Developmental Cognitive Neuroscience, 25, 138–144.
Martin, M. M., & Rubin, R. B. (1995). A new measure of cognitive flexibility. Psychological Reports, 76, 623–626.
Memari, A. H., Ziaee, V., Shayestehfar, M., Ghanouni, P., Mansournia, M. A., & Moshayedi, P. (2013). Cognitive flexibility impairments in children with autism spectrum disorders: Links to age, gender and child outcomes. Research in Developmental Disabilities, 34, 3218–3225.
Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(Pt 6), 1013–1052.
Morice, R. (1990). Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. The British Journal of Psychiatry, 157, 50–54.
Muller, V. I., Langner, R., Cieslik, E. C., Rottschy, C., & Eickhoff, S. B. (2015). Interindividual differences in cognitive flexibility: Influence of gray matter volume, functional connectivity and trait impulsivity. Brain Structure & Function, 220, 2401–2414.
Munoz-Lopez, M. M., Mohedano-Moriano, A., & Insausti, R. (2010). Anatomical pathways for auditory memory in primates. Frontiers in Neuroanatomy, 4, 129.
Murphy, F. C., Michael, A., & Sahakian, B. J. (2012). Emotion modulates cognitive flexibility in patients with major depression. Psychological Medicine, 42, 1373–1382.
Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8, 123–133.
O'Reilly, R. C. (2013). Individual differences in cognitive flexibility. Biological Psychiatry, 74, 78–79.
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987.
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 60–68.
Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45, S199–S209.
Prado, V. F., Janickova, H., Al-Onaizi, M. A., & Prado, M. A. (2017). Cholinergic circuits in cognitive flexibility. Neuroscience, 345, 130–141.
Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88.
Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18, 42–55.
Rende, B. (2000). Cognitive flexibility: Theory, assessment, and treatment. Seminars in Speech and Language, 21, 121–132 quiz 133.
Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12, 142–162.
Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9, 7–24.
Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., & Mourao-Miranda, J. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11, 319–337.
Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.
Vaghi, M. M., Vertes, P. E., Kitzbichler, M. G., Apergis-Schoute, A. M., van der Flier, F. E., Fineberg, N. A., Sule, A., Zaman, R., Voon, V., Kundu, P., et al. (2017). Specific Frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: Evidence from resting-state functional connectivity. Biological Psychiatry, 81, 708–717.
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., et al. (2012). The human connectome project: A data acquisition perspective. Neuroimage, 62, 2222–2231.
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn human connectome project: An overview. Neuroimage, 80, 62–79.
van Schouwenburg, M. R., Onnink, A. M., ter Huurne, N., Kan, C. C., Zwiers, M. P., Hoogman, M., Franke, B., Buitelaar, J. K., & Cools, R. (2014). Cognitive flexibility depends on white matter microstructure of the basal ganglia. Neuropsychologia, 53, 171–177.
Vatansever, D., Manktelow, A. E., Sahakian, B. J., Menon, D. K., & Stamatakis, E. A. (2016). Cognitive flexibility: A default network and basal ganglia connectivity perspective. Brain Connectivity, 6, 201–207.
Waltz, J. A. (2017). The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience, 345, 203–217.
Wang, Y., Chen, J., & Yue, Z. (2017). Positive emotion facilitates cognitive flexibility: An fMRI study. Frontiers in Psychology, 8, 1832.
Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., Carlozzi, N. E., Slotkin, J., Blitz, D., Wallner-Allen, K., et al. (2013). Cognition assessment using the NIH toolbox. Neurology, 80, S54–S64.
Zahn, R., Moll, J., Paiva, M., Garrido, G., Krueger, F., Huey, E. D., & Grafman, J. (2009). The neural basis of human social values: Evidence from functional MRI. Cerebral Cortex, 19, 276–283.
Zelazo, P. D. (2006). The dimensional change card sort (DCCS): A method of assessing executive function in children. Nature Protocols, 1, 297–301.