Quantitative mapping of switching behavior in piezoresponse force microscopy

Review of Scientific Instruments - Tập 77 Số 7 - 2006
Stephen Jesse1, Ho Nyung Lee1, Sergei V. Kalinin1
1Oak Ridge National Laboratory Materials Sciences and Technology Division, , Oak Ridge, Tennessee 37831

Tóm tắt

The application of ferroelectric materials for nonvolatile memory and ferroelectric data storage necessitates quantitative studies of local switching characteristics and their relationship to material microstructure and defects. Switching spectroscopy piezoresponse force microscopy (SS-PFM) is developed as a quantitative tool for real-space imaging of imprint, coercive bias, remanent and saturation responses, and domain nucleation voltage on the nanoscale. Examples of SS-PFM implementation, data analysis, and data visualization are presented for epitaxial lead zirconate titanate (PZT) thin films and polycrystalline PZT ceramics. Several common artifacts related to the measurement method, environmental factors, and instrument settings are analyzed.

Từ khóa


Tài liệu tham khảo

2000, Ferroelectric Memories

Waser, 2003, Nanoelectronics and Information Technology

1998, Appl. Phys. Lett., 72, 1454, 10.1063/1.120591

2002, Phys. Rev. Lett., 89, 097601, 10.1103/PhysRevLett.89.097601

2002, Nano Lett., 2, 589, 10.1021/nl025556u

2004, Adv. Mater. (Weinheim, Ger.), 16, 795, 10.1002/adma.200305702

2005, Appl. Phys. Lett., 87, 082902, 10.1063/1.2010605

2006, Appl. Phys. Lett., 88, 072911, 10.1063/1.2172230

2004, Mater. Res. Soc. Symp. Proc., 839E, O7

2002, J. Appl. Phys., 92, 2734, 10.1063/1.1497698

Hong, 2004, Nanoscale Phenomena in Ferroelectric Thin Films, 10.1007/978-1-4419-9044-0

1999, Appl. Phys. Lett., 75, 1158, 10.1063/1.124628

2005, Nanotechnology, 16, 2587, 10.1088/0957-4484/16/11/020

2000, Appl. Phys. Lett., 77, 3444, 10.1063/1.1328049

2001, Integr. Ferroelectr., 38, 23, 10.1080/10584580108016914

2001, Appl. Phys. Lett., 79, 242, 10.1063/1.1385184

2006, Microsc. Microanal., 12, 206

2004, Mater. Res. Soc. Symp. Proc., 784, C11

2006, Appl. Phys. Lett., 88, 062908, 10.1063/1.2172216

2001, J. Appl. Phys., 90, 4668, 10.1063/1.1405822

2001, J. Appl. Phys., 89, 1377, 10.1063/1.1331654

Alexe, 2004, Nanoscale Characterization of Ferroelectric Materials, 10.1007/978-3-662-08901-9

2004, J. Electroceram., 13, 287, 10.1007/s10832-004-5114-y

2003, Appl. Phys. Lett., 83, 338, 10.1063/1.1592307

2006, Nanotechnology, 17, 1615, 10.1088/0957-4484/17/6/014

cond-mat/0509427.

2005, Phys. Rev. B, 72, 214120, 10.1103/PhysRevB.72.214120

2001, Appl. Phys. Lett., 78, 1116, 10.1063/1.1348303

Kalinin, Electrical and Electromechanical Phenomena on the Nanoscale by Scanning Probe Microscopy

1998, Appl. Phys. Lett., 73, 123, 10.1063/1.121788

Bonnell, 2000, Scanning Probe Microscopy and Spectroscopy

1995, Appl. Phys. Lett., 67, 476, 10.1063/1.114541

2002, Appl. Phys. Lett., 80, 459

1998, J. Appl. Phys., 84, 6891, 10.1063/1.368986

2000, J. Appl. Phys., 87, 3950, 10.1063/1.372440

2002, J. Appl. Phys., 91, 3816, 10.1063/1.1446230

2004, Appl. Phys. Lett., 85, 2896, 10.1063/1.1799241

S. F. Lyuksyutov, P. B. Paramonov, and R. A. Vaia, cond-mat/0505457.

2003, Phys. Rev. Lett., 91, 056101, 10.1103/PhysRevLett.90.056101

2004, J. Mater. Res., 19, 3447, 10.1557/JMR.2004.0318