Quantitative assessment of aqueous sulfate contributions from Fe3+- and O2-driven oxidation pathways of hydrothermal sulfur using oxygen isotopes

Journal of Volcanology and Geothermal Research - Tập 439 - Trang 107848 - 2023
Jessica J. Ende1,2, Anna Szynkiewicz3
1Teledyne Brown Engineering, Huntsville, AL, United States of America
2NASA Marshall Space Flight Center, Payload Operations and Integration Center, Huntsville, AL, United States of America
3Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN, United States of America

Tài liệu tham khảo

Ármannsson, 1989, Gas changes in the Krafla geothermal system, Iceland, Chem. Geol., 76, 175, 10.1016/0009-2541(89)90089-2 Arvidson, 2016, Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice, J. Geophys. Res. Plan., 121, 1602, 10.1002/2016JE005079 Balci, 2007, Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite, Geochim. Cosmochim. Acta, 71, 3796, 10.1016/j.gca.2007.04.017 Barth, 1950 Brock, 1976, Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats, Geochim. Cosmochim. Acta, 40, 493, 10.1016/0016-7037(76)90217-9 Brunner, 2008, Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy, Earth Planet. Sci. Lett., 270, 63, 10.1016/j.epsl.2008.03.019 Charles, 1986, An interpretation of the alteration assemblages at Sulphur Springs, Valles caldera, New Mexico, J. Geophys. Res. Solid Earth, 91, 1887, 10.1029/JB091iB02p01887 Descostes, 2004, Pyrite dissolution in acidic media, Geochim. Cosmochim. Acta, 68, 4559, 10.1016/j.gca.2004.04.012 Ende, 2021, Mechanisms of sulfate formation in acidic hydrothermal sites of Iceland, Lassen, Valles Caldera, and Yellowstone: Implications for possible oxidation pathways in Martian volcanic settings, Icarus, 368, 10.1016/j.icarus.2021.114608 Fischer, 2015, Volcanic, magmatic, and hydrothermal gases Goff, 1982, Valles caldera geothermal systems, New Mexico, USA, J. Hydrol., 56, 119, 10.1016/0022-1694(82)90061-0 Gunter, 1966, Gas chromatographic measurements of hydrothermal emanations at Yellowstone National Park, Geochim. Cosmochim. Acta, 30, 1175, 10.1016/0016-7037(66)90036-6 Heidel, 2010, The isotopic composition of sulfate from anaerobic and low oxygen pyrite oxidation experiments with ferric iron–new insights into oxidation mechanisms, Chem. Geol., 281, 305, 10.1016/j.chemgeo.2010.12.017 Hubbard, 2009, Aqueous geochemistry and oxygen isotope compositions of acid mine drainage from the Río Tinto, SW Spain, highlight inconsistencies in current models, Chem. Geol., 265, 321, 10.1016/j.chemgeo.2009.04.009 Janik, 2010, Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: evidence for two circulation cells in the hydrothermal system, J. Volcanol. Geotherm. Res., 189, 257, 10.1016/j.jvolgeores.2009.11.014 Kaasalainen, 2012, The chemistry of trace elements in surface geothermal waters and steam, Iceland, Chem. Geol., 330–331, 60, 10.1016/j.chemgeo.2012.08.019 Kamyshny, 2014, Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs, Geochem. Trans., 15, 7, 10.1186/1467-4866-15-7 King, 2010, Sulfur on Mars, Elements, 6, 107, 10.2113/gselements.6.2.107 Kohl, 2011, Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH= 2–11), Geochim. Cosmochim. Acta, 75, 1785, 10.1016/j.gca.2011.01.003 Kral, 2011, Low pressure and desiccation effects on methanogens: implications for life on Mars, Planet. Space Sci., 59, 264, 10.1016/j.pss.2010.07.012 Kroopnick, 1972, Atmospheric oxygen: isotopic composition and solubility fractionation, Science, 175, 54, 10.1126/science.175.4017.54 Krouse, 1991 Langevin, 2005, Sulfates in the north polar region of Mars detected by OMEGA/Mars express, Science, 307, 158 Lloyd, 1968, Oxygen isotope behavior in the sulfate-water system, J. Geophys. Res., 73, 6099, 10.1029/JB073i018p06099 Lueth, 2005, “Sour gas” hydrothermal jarosite: ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift, Chem. Geol., 215, 339, 10.1016/j.chemgeo.2004.06.042 Mayer, 2004, Procedures for sulfur isotope abundance studies McKenzie, 1977, Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes, Geothermics, 5, 51, 10.1016/0375-6505(77)90008-6 McLennan, 2012, Geochemistry of sedimentary processes on Mars, Sediment. Geol. Mars, 102, 119 Mizutani, 1972, Isotopic composition and underground temperature of the Otake geothermal water, Kyushu, Japan, Geochem. J., 6, 67, 10.2343/geochemj.6.67 Mizutani, 1969 Moore, 2022, Controls on S mineral formation and preservation in hydrothermal sediments: Implications for the volcanic, aqueous, and climatic history of Gusev crater, Mars. Icarus, 376 Moses, 1987, Aqueous pyrite oxidation by dissolved by dissolved oxygen and ferric iron, Geochim. Cosmochim. Acta, 51, 1561, 10.1016/0016-7037(87)90337-1 Muffler, 1982, Lassen geothermal system (no. USGS-OFR-82-926) Nie, 2016, Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars, Earth Planet. Sci. Lett., 458, 179, 10.1016/j.epsl.2016.10.035 Pisapia, 2007, O and S isotopic composition of dissolved and attached oxidation products of pyrite by Acidithiobacillus ferrooxidans: comparison with abiotic oxidations, Geochim. Cosmochim. Acta, 71, 2474, 10.1016/j.gca.2007.02.021 Poulet, 2007, Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps, J. Geophys. Res. Plan., 112 Rollinson, 1993 Rye, 2005, A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems, Chem. Geol., 215, 5, 10.1016/j.chemgeo.2004.06.034 Singer, 1970, Acidic mine drainage: the rate-determining step, Sci., 167, 1121, 10.1126/science.167.3921.1121 Squyres, 2007, Pyroclastic activity at home plate in Gusev Crater, Mar. Sci., 316, 738 Squyres, 2008, Detection of silica-rich deposits on Mars, Sci., 320, 1063, 10.1126/science.1155429 Taylor, 1984, Oxygen and sulfur compositions of sulfate in acid mine drainage: evidence for oxidation mechanisms, Nature, 308, 538, 10.1038/308538a0 Taylor, 1984, Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite, Geochim. Cosmochim. Acta, 48, 2669, 10.1016/0016-7037(84)90315-6 Tichomirowa, 2009, Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments, Appl. Geochem., 24, 2072, 10.1016/j.apgeochem.2009.08.002 Walters, 2019, Isotopic compositions of sulfides in exhumed high pressure terranes: Implications for sulfur cycling in subduction zones, Geochem. Geophys. Geosyst., 20, 3347, 10.1029/2019GC008374 Xu, 1998, Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters, Geochim. Cosmochim. Acta, 62, 3729, 10.1016/S0016-7037(98)00269-5