Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective

Earth-Science Reviews - Tập 106 - Trang 105-130 - 2011
P. Regnier1,2, A.W. Dale3, S. Arndt2,4, D.E. LaRowe2,5, J. Mogollón2, P. Van Cappellen2,5
1Dept. of Earth & Environmental Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
2Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
3IFM-GEOMAR, Leibniz Institute of Marine Sciences, Kiel, Germany
4Laboratoire des Mécanismes et Transferts en Géologie (LMTG), Observatoire Midi-Pyrénées, Toulouse, France
5School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Tài liệu tham khảo

Abell, 2009, Bioavailability of organic matter in a freshwater estuarine sediment: long-term degradation experiments with and without nitrate supply, Biogeochemistry, 94, 256, 10.1007/s10533-009-9296-x Adler, 2000, Computer simulation of deep sulfate reduction in sediments of the Amazon Fan, International Journal of Earth Sciences, 88, 641, 10.1007/s005310050294 Albert, 1998, Biogeochemical processes controlling methane in gassy coastal sediments—part 2: groundwater flow control of acoustic turbidity in Eckernförde Bay Sediments, Continental Shelf Research, 18, 1771, 10.1016/S0278-4343(98)00057-0 Algar, 2009, Transient growth of an isolated bubble in muddy, fine-grained sediments, Geochimica et Cosmochimica Acta, 73, 2581, 10.1016/j.gca.2009.02.008 Aloisi, 2004, Chemical, biological and hydrological controls on the C content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps, Chemical Geology, 213, 359, 10.1016/j.chemgeo.2004.07.008 Aloisi, 2004, The effect of dissolved barium on biogeochemical processes at cold seeps, Geochimica et Cosmochimica Acta, 68, 1735, 10.1016/j.gca.2003.10.010 Alperin, 2009, Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints, American Journal of Science, 309, 869, 10.2475/10.2009.01 Alperin, 1988, Carbon and hydrogen isotope fractionation resulting from anaerobic oxidation of methane, Global Biogeochemical Cycles, 2, 279, 10.1029/GB002i003p00279 Alperin, 1994, Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich sediment, Geochimica et Cosmochimica Acta, 58, 4909, 10.1016/0016-7037(94)90221-6 Alperin, 2002, Modern organic carbon burial fluxes, recent sedimentation rates, and particle mixing rates from the upper continental slope near Cape Hatteras, North Carolina (USA), Deep-Sea Research II, 49, 4645, 10.1016/S0967-0645(02)00133-9 Amend, 2001, Carbohydrates in thermophile metabolism: Calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures, Geochimica et Cosmochimica Acta, 65, 3901, 10.1016/S0016-7037(01)00707-4 Anderson, 1998, Bubble populations and acoustic interaction with the gassy floor of Eckernfoerde Bay, Continental Shelf Research, 18, 1807, 10.1016/S0278-4343(98)00059-4 Archer, 2008, Ocean methane hydrates as a slow tipping point in the global carbon cycle, Proceedings of the National Academy of Sciences of the United States of America Arndt, 2006, Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise), Geochimica et Cosmochimica Acta, 70, 408, 10.1016/j.gca.2005.09.010 Arndt, 2009, Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: a reaction-transport model, Geochimica et Cosmochimica Acta, 73, 2000, 10.1016/j.gca.2009.01.018 Arnosti, 2004, Speed bumps and barricades in the carbon cycle: substrate structural effects on carbon cycling, Marine Chemistry, 92, 263, 10.1016/j.marchem.2004.06.030 Arnosti, 1999, Carbohydrate dynamics and contributions to the carbon budget of an organic-rich coastal sediment, Geochimica et Cosmochimica Acta, 63, 393, 10.1016/S0016-7037(99)00076-9 Audet, 1995, Modeling of porosity evolution and mechanical compaction of calcareous sediments, Sedimentology, 42, 355, 10.1111/j.1365-3091.1995.tb02106.x Barnes, 1976, Methane production and consumption in anoxic marine sediments, Geology, 4, 297, 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2 Beal, 2009, Manganese- and iron-dependent marine methane oxidation, Science, 325, 184, 10.1126/science.1169984 Bear, 1972 Berner, 1980 Best, 2006, Shallow seabed methane gas could pose coastal hazard, Eos Transactions, 87, 213, 10.1029/2006EO220001 Bhatnagar, 2007, Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes, American Journal of Science, 307, 861, 10.2475/06.2007.01 Bhatnagar, 2008, Sulfate–methane transition as a proxy for average methane hydrate saturation in marine sediments, Geophysical Research Letters, 35, L03611, 10.1029/2007GL032500 Blair, 1995, Anaerobic methane oxidation on the Amazon shelf, Geochimica et Cosmochimica Acta, 59, 3707, 10.1016/0016-7037(95)00277-7 Boetius, 2000, A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623, 10.1038/35036572 Bohrmann, 2006, Gas hydrates in marine sediments, 271 Borowski, 1996, Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate, Geology, 24, 655, 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2 Borowski, 1999, Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates, Marine Geology, 159, 131, 10.1016/S0025-3227(99)00004-3 Borowski, 2000, 164, 87 Boudreau, 1984, On the equivalence of nonlocal and radial-diffusion models for porewater irrigation, Journal of Marine Research, 42, 731, 10.1357/002224084788505924 Boudreau, 1997 Boudreau, 1991, On a reactive continuum representation of organic matter diagenesis, American Journal of Science, 291, 507, 10.2475/ajs.291.5.507 Boudreau, 2005, Bubble growth and rise in soft sediments, Geology, 33, 517, 10.1130/G21259.1 Brüchert, 2003, Anaerobic carbon transformation: experimental studies with flow-through cells, Marine Chemistry, 80, 171, 10.1016/S0304-4203(02)00119-6 Brüchert, 2003, Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central namibian coastal upwelling zone, Geochimica et Cosmochimica Acta, 67, 4505, 10.1016/S0016-7037(03)00275-8 Buffett, 2004, Global inventory of methane clathrate: sensitivity to changes in the deep ocean, Earth and Planetary Science Letters, 227, 185, 10.1016/j.epsl.2004.09.005 Burdige, 1998, Molecular weight distribution of dissolved organic carbon in marine sediment pore waters, Marine Chemistry, 62, 45, 10.1016/S0304-4203(98)00035-8 Burdige, 2000, Dissolved and particulate carbohydrates in contrasting marine sediments, Geochimica et Cosmochimica Acta, 64, 1029, 10.1016/S0016-7037(99)00361-0 Caldwell, 2008, Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms, Environmental Science & Technology, 42, 6791, 10.1021/es800120b Canavan, 2006, Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization, Geochimica et Cosmochimica Acta, 70, 2836, 10.1016/j.gca.2006.03.012 Catling, 2007, Anaerobic methanotrophy and the rise of oxygen, Philosophical Transactions of the Royal Society A, 365, 1867, 10.1098/rsta.2007.2047 Claypool, 1974, The origin and distribution of methane in marine sediments, 99 Dale, 2006, Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis, American Journal of Science, 306, 246, 10.2475/ajs.306.4.246 Dale, 2008, Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments, Journal of Marine Research, 66, 127, 10.1357/002224008784815775 Dale, 2008, Methane efflux from marine sediments in passive and active margins: estimations from bioenergetic reaction-transport simulations, Earth and Planetary Science Letters, 265, 329, 10.1016/j.epsl.2007.09.026 Dale, 2008, Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modelling, Geochimica et Cosmochimica Acta, 72, 2880, 10.1016/j.gca.2007.11.039 Dale, 2009, An integrated sulfur isotope model for Namibian shelf sediments, Geochimica et Cosmochimica Acta, 73, 1924, 10.1016/j.gca.2008.12.015 Dale, 2009, Remote quantification of methane fluxes in gassy marine sediments through seismic survey, Geology, 37, 235, 10.1130/G25323A.1 Dale, 2010, Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand), Geochimica et Cosmochimica Acta, 74, 5763, 10.1016/j.gca.2010.06.038 Davie, 2001, A numerical model for the formation of gas hydrate below the seafloor, Journal of Geophysical Research, 106, 497, 10.1029/2000JB900363 Devol, 1983, Methane oxidation rates in the anaerobic sediments of Saanich Inlet, Limnology and Oceanography, 28, 738, 10.4319/lo.1983.28.4.0738 Devol, 1984, A model for coupled sulphate reduction and methane oxidation in the sediments of Saanich Inlet, Geochimica et Cosmochimica Acta, 48, 993, 10.1016/0016-7037(84)90191-1 D'Hondt, 2002, Metabolic activity of subsurface life in deep-sea sediments, Science, 295, 2067, 10.1126/science.1064878 D'Hondt, 2004, Distributions of microbial activities in deep subseafloor sediments, Science, 306, 2216, 10.1126/science.1101155 Duan, 1992, The prediction of methane solubility in natural waters to high ionic strength from 0 degrees to 250 degrees and from 0 to 1600bar, Geochimica et Cosmochimica Acta, 56, 1451, 10.1016/0016-7037(92)90215-5 Emeis, 2004, Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem, Continental Shelf Research, 24, 627, 10.1016/j.csr.2004.01.007 Ferdelman, 1997, Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile, Geochimica et Cosmochimica Acta, 61, 3065, 10.1016/S0016-7037(97)00158-0 Flemings, 2003, Critical pressure and multiphase flow in Blake Ridge gas hydrates, Geology, 31, 1057, 10.1130/G19863.1 Fossing, 1995, Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 274, 713, 10.1038/374713a0 Fossing, 2000, Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia), Geochimica et Cosmochimica Acta, 64, 897, 10.1016/S0016-7037(99)00349-X Gardiner, 2003, Growth of disk-shaped bubbles in sediments, Geochimica et Cosmochimica Acta, 67, 1485, 10.1016/S0016-7037(02)01072-4 Haeckel, 2006, 205 Haeckel, 2004, Rising methane gas bubbles form massive hydrate layers at the seafloor, Geochimica et Cosmochimica Acta, 68, 4335, 10.1016/j.gca.2004.01.018 Haeckel, 2007, Bubble-induced porewater mixing: a 3-D model for deep porewater irrigation, Geochimica et Cosmochimica Acta, 71, 5135, 10.1016/j.gca.2007.08.011 Haese, 2003, Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea, Earth and Planetary Science Letters, 212, 361, 10.1016/S0012-821X(03)00226-7 Halbach, 2004, Migration of the sulphate–methane reaction zone in marine sediments of the Sea of Marmara—can this mechanism be tectonically induced?, Chemical Geology, 205, 73, 10.1016/j.chemgeo.2003.12.013 Hee, 2001, Dissolved organic carbon production and consumption in anoxic marine sediments: a pulsed-tracer experiment, Limnology and Oceanography, 46, 1908, 10.4319/lo.2001.46.8.1908 Helgeson, 1978, Summary and critique of the thermodynamic properties of rock-forming minerals, American Journal of Science, 278, 1 Hensen, 2005, Methane formation at Costa Rica continental margin—constraints for gas hydrate inventories and cross-décollement fluid flow, Earth and Planetary Science Letters, 235, 41, 10.1016/j.epsl.2005.06.007 Hensen, 2003, Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments, Geochimica et Cosmochimica Acta, 67, 2631, 10.1016/S0016-7037(03)00199-6 Hinrichs, 2002, The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry, 457 Hinrichs, 1999, Methane-consuming archaebacteria in marine sediments, Nature, 398, 802, 10.1038/19751 Hoehler, 2004, Biological energy requirements as quantitative boundary conditions for life in the subsurface, Geobiology, 2, 205, 10.1111/j.1472-4677.2004.00033.x Hoehler, 1994, Field and laboratory studies of methane oxidation in an anoxic marine sediment—evidence for a methanogen–sulfate reducer consortium, Global Biogeochemical Cycles, 8, 451, 10.1029/94GB01800 Iversen, 1985, Anaerobic methane oxidation rates at the sulphate–methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnology and Oceanography, 30, 944, 10.4319/lo.1985.30.5.0944 Jensen, 2005, Composition and diagenesis of neutral carbohydrates in sediments of the Baltic–North Sea transition, Geochimica et Cosmochimica Acta, 69, 4085, 10.1016/j.gca.2005.01.021 Jin, 2005, Predicting the rate of microbial respiration in geochemical environments, Geochimica et Cosmochimica Acta, 69, 1133, 10.1016/j.gca.2004.08.010 Johnson, 1992, SUPCRT92—a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1bar to 5000bar and 0°C to 1000°C, Computers and Geoscience, 18, 899, 10.1016/0098-3004(92)90029-Q Jørgensen, 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnology and Oceanography, 22, 814, 10.4319/lo.1977.22.5.0814 Jørgensen, 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II Calculation from mathematical models, Geomicrobiology Journal, 1, 29, 10.1080/01490457809377722 Jørgensen, 2006, Sulfur cycling and methane oxidation, 271 Jørgensen, 2004, 379, 63 Jørgensen, 2001, Sulfate reduction and anaerobic methane oxidation in Black Sea sediments, Deep-Sea Research I, 48, 2097, 10.1016/S0967-0637(01)00007-3 Jørgensen, 2004, Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments, Geochimica et Cosmochimica Acta, 68, 2095, 10.1016/j.gca.2003.07.017 Jourabchi, 2010, Physical and chemical steady-state compaction in deep-sea sediments: role of mineral reactions, Geochimica et Cosmochimica Acta, 74, 3494, 10.1016/j.gca.2010.02.037 Judd, 2007 Knab, 2008, Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments, Geochimica et Cosmochimica Acta, 72, 3746, 10.1016/j.gca.2008.05.039 Knab, 2009, Regulation of anaerobic methane oxidation in sediments of the Black Sea, Biogeosciences, 6, 1505, 10.5194/bg-6-1505-2009 Knittel, 2009, Anaerobic oxidation of methane: progress with an unknown process, Annual Review of Microbiology, 63, 311, 10.1146/annurev.micro.61.080706.093130 Komada, 2004, Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments, Geochimica et Cosmochimica Acta, 68, 4099, 10.1016/j.gca.2004.04.005 Kotelnikova, 2002, Microbial production and oxidation of methane in deep subsurface, Earth Science Reviews, 58, 367, 10.1016/S0012-8252(01)00082-4 Kvenvolden, 1993, Gas hydrates—geological perspective and global change, Reviews of Geophysics, 31, 173, 10.1029/93RG00268 LaRowe, 2006, Biomolecules in hydrothermal systems: calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures, Geochimica et Cosmochimica Acta, 70, 4680, 10.1016/j.gca.2006.04.010 LaRowe, 2006, The energetics of metabolism in hydrothermal systems: calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperature and pressures, Thermochimica Acta, 448, 82, 10.1016/j.tca.2006.06.008 LaRowe, 2007, Quantifying the energetics of metabolic reactions in diverse biogeochemical systems: electron flow and ATP synthesis, Geobiology, 5, 153, 10.1111/j.1472-4669.2007.00099.x LaRowe, 2008, A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments, Geobiology, 6, 436, 10.1111/j.1472-4669.2008.00170.x Lavik, 2009, Detoxification of sulphidic African shelf waters by blooming chemolithotrophs, Nature, 457, 581, 10.1038/nature07588 Linke, 2005, In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin, Earth and Planetary Science Letters, 235, 79, 10.1016/j.epsl.2005.03.009 Luff, 2003, Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances, Geochimica et Cosmochimica Acta, 67, 3403, 10.1016/S0016-7037(03)00127-3 Luff, 2004, Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities, Earth and Planetary Science Letters, 221, 337, 10.1016/S0012-821X(04)00107-4 Luff, 2005, Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites, Chemical Geology, 216, 157, 10.1016/j.chemgeo.2004.11.002 Maher, 2006, The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments, Geochimica et Cosmochimica Acta, 70, 337, 10.1016/j.gca.2005.09.001 Martens, 1977, Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases, Limnology and Oceanography, 22, 10, 10.4319/lo.1977.22.1.0010 Martens, 1980, Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment–water exchange processes, Geochimica et Cosmochimica Acta, 44, 471, 10.1016/0016-7037(80)90045-9 Martens, 1998, Biogeochemical processes controlling methane in gassy coastal sediments—Part 1. A model coupling organic matter flux to gas production, oxidation and transport, Continental Shelf Research, 18, 1741, 10.1016/S0278-4343(98)00056-9 Martens, 1999, Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea, American Journal of Science, 299, 589, 10.2475/ajs.299.7-9.589 Megonigal, 2004, 8, 317 Meile, 2003, Global estimates of enhanced solute transport in marine sediments, Limnology and Oceanography, 48, 777, 10.4319/lo.2003.48.2.0777 Meile, 2005, Solute-specific pore water irrigation: Implications for chemical cycling in early diagenesis, Journal of Marine Research, 64, 601, 10.1357/0022240054307885 Meysman, 2003, Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis, Computers and Geosciences, 29, 301, 10.1016/S0098-3004(03)00007-4 Meysman, 2006, The influence of porosity gradients on mixing coefficients in sediments, Geochimica et Cosmochimica Acta, 71, 961, 10.1016/j.gca.2006.11.024 Meysman, 2006, Bio-irrigation in permeable sediments: an assessment of model complexity, Journal of Marine Research, 64, 589, 10.1357/002224006778715757 Middelburg, 1989, A simple rate model for organic matter decomposition in marine sediments, Geochimica et Cosmochimica Acta, 53, 1577, 10.1016/0016-7037(89)90239-1 Middelburg, 1997, Empirical relationships for use in global diagenetic models, Deep-Sea Research I, 44, 327, 10.1016/S0967-0637(96)00101-X Mogollón, 2009, Methane gas-phase dynamics in marine sediments: a model study, American Journal of Science, 309, 189, 10.2475/03.2009.01 Mogollón, J.M., Dale, A., L'Heureux, I., & Regnier, P. Seasonal controls on methane gas and anaerobic oxidation of methane in shallow marine sediments. Journal of Geophysical Research. submitted for publication. Molins, 2007, Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: a reactive transport modeling study, Water Resources Research, 43, W05435, 10.1029/2006WR005206 Molins, 2010, Vadose zone attenuation of organic compounds at a crude oil spill site—interactions between biogeochemical reactions and multicomponent gas transport, Journal of Contaminant Hydrology, 112, 15, 10.1016/j.jconhyd.2009.09.002 Murray, 1978, Interstitial water chemistry in the sediments of Saanich Inlet, Geochimica et Cosmochimica Acta, 42, 1011, 10.1016/0016-7037(78)90290-9 Nauhaus, 2002, In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area, Environmental Microbiology, 4, 296, 10.1046/j.1462-2920.2002.00299.x Nauhaus, 2005, Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities, Environmental Microbiology, 7, 98, 10.1111/j.1462-2920.2004.00669.x Nauhaus, 2007, In vitro cell growth of marine archaeal–bacterial consortia during anaerobic oxidation of methane with sulfate, Environmental Microbiology, 9, 187, 10.1111/j.1462-2920.2006.01127.x Nihoul, 1976, Applied mathematical modelling in marine sciences, Applied Mathematical Modeling, 1, 3, 10.1016/0307-904X(76)90016-0 Orcutt, 2008, Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions, Biogeosciences, 5, 1587, 10.5194/bg-5-1587-2008 Orphan, 2001, Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis, Science, 293, 484, 10.1126/science.1061338 Orphan, 2002, Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments, Proceedings of the National Academy of Sciences of the United States of America, 99, 7663, 10.1073/pnas.072210299 Otte, 1999, Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples, Applied and Environmental Microbiology, 65, 3148, 10.1128/AEM.65.7.3148-3157.1999 Pallud, 2006, Kinetics of microbial sulfate reduction in estuarine sediments, Geochimica et Cosmochimica Acta, 70, 1148, 10.1016/j.gca.2005.11.002 Parkes, 2005, Deep sub-seafloor prokaryotes stimulated at interfaces over geological time, Nature, 436, 390, 10.1038/nature03796 Parkes, 2007, Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark), Environmental Microbiology, 9, 1146, 10.1111/j.1462-2920.2006.01237.x Raghoebarsing, 2006, A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 440, 918, 10.1038/nature04617 Reagan, 2008, Dynamic response of oceanic hydrate deposits to ocean temperature change, Journal of Geophysical Research, 113, C12023, 10.1029/2008JC004938 Reeburgh, 1976, Methane consumption in Cariaco Trench waters and sediments, Earth and Planetary Science Letters, 28, 337, 10.1016/0012-821X(76)90195-3 Reeburgh, 1980, Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments, Earth and Planetary Science Letters, 47, 345, 10.1016/0012-821X(80)90021-7 Reeburgh, 2007, Oceanic methane biogeochemistry, Chemical Reviews, 107, 486, 10.1021/cr050362v Regnier, 2002, Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a knowledge base, Applied Mathematical Modelling, 26, 913, 10.1016/S0307-904X(02)00047-1 Regnier, 2005, Incorporating geomicrobial processes in subsurface reactive transport models, 107 Riedinger, 2005, Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate, Geochimica et Cosmochimica Acta, 69, 4117, 10.1016/j.gca.2005.02.004 Riedinger, 2006, Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin, Earth and Planetary Science Letters, 241, 876, 10.1016/j.epsl.2005.10.032 Rittmann, 1996, Microbiological processes in reactive modeling, 34, 311 Robinson, 1965, 571 Schink, 1997, Energetics of syntrophic cooperation in methanogenic degradation, Microbiology and Molecular Biology Reviews, 61, 262, 10.1128/.61.2.262-280.1997 Schmidt, 2005, Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc, Marine Geology, 216, 83, 10.1016/j.margeo.2005.01.001 Schowalter, 1979, Mechanics of secondary hydrocarbon migration and entrapment, American Association of Petroleum Geologists Bulletin, 63, 723 Shock, 1988, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—correlation algorithms for ionic species and equation of state predictions to 5kb and 1000°C, Geochimica et Cosmochimica Acta, 52, 2009, 10.1016/0016-7037(88)90181-0 Shock, 1990, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—standard partial molal properties of organic species, Geochimica et Cosmochimica Acta, 54, 915, 10.1016/0016-7037(90)90429-O Shock, 1989, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures—standard partial molal properties of inorganic neutral species, Geochimica et Cosmochimica Acta, 53, 2157, 10.1016/0016-7037(89)90341-4 Shock, 1997, Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochimica et Cosmochimica Acta, 61, 907, 10.1016/S0016-7037(96)00339-0 Sivan, 2007, Rates of methanogenesis and methanotrophy in deep-sea sediments, Geobiology, 5, 141, 10.1111/j.1472-4669.2007.00098.x Sommer, 2006, Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge, Global Biogeochemical Cycles, 20, GB2019, 10.1029/2004GB002389 Sørensen, 2001, Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles, Microbial Ecology, 42, 1, 10.1007/s002480000083 Steefel, 1994, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, American Journal of Science, 294, 529, 10.2475/ajs.294.5.529 Steefel, 1996, Approaches to modeling of reactive transport in porous media, 34, 83 Steefel, 2009, Fluid-rock interaction: a reactive transport approach, 70, 485-53 Stöhr, 2006, Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media, Physical Review E, 27, 1 Strous, 2004, Anaerobic oxidation of methane and ammonium, Annual Review of Microbiology, 58, 99, 10.1146/annurev.micro.58.030603.123605 Thomsen, 2001, Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment, Applied and Environmental Microbiology, 67, 1646, 10.1128/AEM.67.4.1646-1656.2001 Thullner, 2005, Modeling the impact of microbial activity on redox dynamics in porous media, Geochimica et Cosmochimica Acta, 69, 5005, 10.1016/j.gca.2005.04.026 Thullner, 2007, Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions, Geomicrobiology Journal, 24, 139, 10.1080/01490450701459275 Thullner, 2009, Global scale quantification of organic carbon degradation pathways in marine sediments: a reactive transport modeling approach, Geochemistry, Geophysics, Geosystems, 10 Tishchenko, 2005, Calculation of the stability and solubility of methane hydrate in seawater, Chemical Geology, 219, 37, 10.1016/j.chemgeo.2005.02.008 Torres, 2004, Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon, Earth and Planetary Science Letters, 226, 225, 10.1016/j.epsl.2004.07.029 Treude, 2003, Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean, Marine Ecology Progress Series, 264, 1, 10.3354/meps264001 Treude, 2005, Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic), Limnology and Oceanography, 50, 1771, 10.4319/lo.2005.50.6.1771 Tromp, 1995, A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments, Geochimica et Cosmochimica Acta, 59, 1259, 10.1016/0016-7037(95)00042-X Tryon, 2001, Complex flow patterns through Hydrate Ridge and their impact on seep biota, Geophysical Research Letters, 28, 2863, 10.1029/2000GL012566 Ussler, 2008, Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles, Earth and Planetary Science Letters, 266, 271, 10.1016/j.epsl.2007.10.056 Valentine, 2002, Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review, Antonie van Leewenhoek, 81, 271, 10.1023/A:1020587206351 Valentine, 2000, New perspectives on anaerobic methane oxidation, Environmental Microbiology, 2, 477, 10.1046/j.1462-2920.2000.00135.x Van Cappellen, 1996, Biogeochemical dynamics in aquatic sediments, 34, 335 Van Cappellen, 1996, Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, American Journal of Science, 296, 197, 10.2475/ajs.296.3.197 van Genuchten, 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44, 892, 10.2136/sssaj1980.03615995004400050002x VanBriesen, 2002, Evaluation of methods to predict bacterial yield using thermodynamics, Biodegradation, 13, 171, 10.1023/A:1020887214879 Wagman, 1982, The NBS tables of chemical thermodynamic properties—selected values for inorganic and C-1 and C-2 organic substances in SI units, Journal of Physical and Chemical Reference Data, 11, 1 Wallmann, 1997, Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone, Geochimica et Cosmochimica Acta, 61, 5209, 10.1016/S0016-7037(97)00306-2 Wallmann, 2006, Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes, Earth and Planetary Science Letters, 248, 544, 10.1016/j.epsl.2006.06.026 Wallmann, 2006, Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments, Geochimica et Cosmochimica Acta, 70, 3905, 10.1016/j.gca.2006.06.003 Wegener, 2009, An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes, Biogeosciences, 6, 867, 10.5194/bg-6-867-2009 Westrich, 1984, The role of sedimentary organic matter in bacterial sulfate reduction: the G-model tested, Limnology and Oceanography, 29, 236, 10.4319/lo.1984.29.2.0236 Wever, 1998, Shallow gas in the muddy sediments of Eckernförde Bay, Germany, Continental Shelf Research, 18, 1715, 10.1016/S0278-4343(98)00055-7 Wever, 2006, Potential environmental control of free shallow gas in the seafloor of Eckernförde Bay, Germany, Marine Geology, 225, 1, 10.1016/j.margeo.2005.08.005 Xu, 2001, Modeling multiphase flow and reactive geochemical in variably saturated fractured rocks: 1. Methodology, American Journal of Science, 301, 16, 10.2475/ajs.301.1.16 Zabel, 2001, Importance of submarine landslides for non-steady state conditions in pore water systems—lower Zaire (Congo) deep-sea fan, Marine Geology, 176, 87, 10.1016/S0025-3227(01)00164-5 Zeebe, 2007, Modeling CO2 chemistry, d13C, and oxidation of organic carbon and methane in sediment porewater: implications for paleo-proxies in benthic foraminifera, Geochimica et Cosmochimica Acta, 71, 3238, 10.1016/j.gca.2007.05.004 Zehnder, 1980, Anaerobic methane oxidation: occurrence and ecology, Applied and Environmental Microbiology, 39, 194, 10.1128/AEM.39.1.194-204.1980