Quantitative affinity electrophoresis of RNA–small molecule interactions by cross-linking the ligand to acrylamide
Tài liệu tham khảo
Montange, 2008, Riboswitches: emerging themes in RNA structure and function, Annu. Rev. Biophys., 37, 117, 10.1146/annurev.biophys.37.032807.130000
Roth, 2009, The structural and functional diversity of metabolite-binding riboswitches, Annu. Rev. Biochem., 78, 305, 10.1146/annurev.biochem.78.070507.135656
Mayer, 2009, The chemical biology of aptamers, Angew. Chem. Int. Ed., 48, 2672, 10.1002/anie.200804643
Magnet, 2005, Molecular insights into aminoglycoside action and resistance, Chem. Rev., 105, 477, 10.1021/cr0301088
Tok, 1999, Aminoglycoside antibiotics are able to specifically bind the 5′-untranslated region of thymidylate synthase messenger RNA, Biochemistry, 38, 199, 10.1021/bi9819428
Tor, 2003, Targeting RNA with small molecules, ChemBioChem, 4, 998, 10.1002/cbic.200300680
Chow, 1997, A structural basis for RNA–ligand interactions, Chem. Rev., 97, 1489, 10.1021/cr960415w
Thomas, 2008, Targeting RNA with small molecules, Chem. Rev., 108, 1171, 10.1021/cr0681546
Aboul-Ela, 2010, Strategies for the design of RNA-binding small molecules, Future Med. Chem., 2, 93, 10.4155/fmc.09.149
Carthew, 2009, Origins and mechanisms of miRNAs and siRNAs, Cell, 136, 642, 10.1016/j.cell.2009.01.035
Siomi, 2009, On the road to reading the RNA-interference code, Nature, 257, 396, 10.1038/nature07754
Sharp, 2009, The centrality of RNA, Cell, 136, 577, 10.1016/j.cell.2009.02.007
Karns, 2013, Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function, J. Am. Chem. Soc., 135, 3136, 10.1021/ja310742m
Hellman, 2007, Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions, Nat. Protoc., 2, 1849, 10.1038/nprot.2007.249
Gagnon, 2011, Electrophoretic mobility shift assay for characterizing RNA–protein interaction, Methods Mol. Biol., 703, 275, 10.1007/978-1-59745-248-9_19
Horejsi, 1981, Affinity electrophoresis, Anal. Biochem., 112, 1, 10.1016/0003-2697(81)90252-9
Takeo, 1984, Affinity electrophoresis: principles and applications, Electrophoresis, 5, 187, 10.1002/elps.1150050402
Tomme, 2000, Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules, Enzyme Microb. Technol., 27, 453, 10.1016/S0141-0229(00)00246-5
Cilley, 1997, Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE), RNA, 3, 57
Kormos, 2000, Binding site analysis of cellulose binding domain CBDN1 from endoglucanase C of Cellulomonas fimi by site-directed mutagenesis, Biochemistry, 39, 8844, 10.1021/bi000607s
Heegaard, 2009, Affinity in electrophoresis, Electrophoresis, 30, S229, 10.1002/elps.200900073
Boodram, 2011, Identification of RNA–ligand interactions by affinity electrophoresis, Anal. Biochem., 409, 54, 10.1016/j.ab.2010.09.033
Milligan, 1987, Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates, Nucleic Acids Res., 15, 8783, 10.1093/nar/15.21.8783
Tavares, 2009, Structure of the cytosine–cytosine mismatch in the thymidylate synthase mRNA binding site and analysis of its interaction with the aminoglycoside paromomycin, RNA, 15, 911, 10.1261/rna.1514909
Takeo, 1995, Advances in affinity electrophoresis, J. Chromatogr. A, 698, 89, 10.1016/0021-9673(94)01265-G
Vicens, 2001, Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site, Structure, 9, 647, 10.1016/S0969-2126(01)00629-3
