Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum

Physiology and Molecular Biology of Plants - Tập 18 Số 4 - Trang 287-300 - 2012
Supriya Babasaheb Aglawe1, B. Fakrudin1, Chhaya Patole2, Shivarudrappa B. Bhairappanavar1, R. V. Koti3, P. U. Krishnaraj1
1Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka, 580 005, India
2Department of Chemistry, University of Reading, Reading, UK
3Department of Plant Physiology, UAS, Dharwad, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ariel F, Diet D, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell 22:2171–2183

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242–255

Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Meth 3:1746–1748

Claus AL, Jens JL, Torben OF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

Cohen D, Bogeat-Triboulotl M, Tisserant E, Balzergue S, Martin-Magniette M, Lelandais G, Ningre N, Renou J, Tamby J, Thiec DL, Hummel I (2010) Comparative transcriptomics of drought responses in Populous: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 11:630–642

Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

Edwards D, Murray JA, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117(3):1015–1022

Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

Ghanashyam C, Jain M (2009) Role of auxin-responsive genes in biotic stress responses. Plant Signa Behav 4(9):846–848

Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59(11):2991–3007

Jackson D (1991). In-situ hybridisation in plants. Molecular plant pathology: a practical approach. In: Bowles DJ, Gurr SJ, McPherson M (eds.). Oxford University Press

Jain M, Tyagi AK, Khurana J (2008) Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275(11):2845–2861

Jiang Y, Deyholos MK (2006) Compressive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 47:6–25

Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt S, Torres-Jerez I, Xiao X, Redman JC, Wu HC, Cheung F, Town CD, Udvardi MK (2008) A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Meth 4:18–23

Kanashiro C, Vazquez CC, Ibarra-Laclette E, Herrera-Estrella L and Simpson J (2009). Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 4(10):e7531

Karlgren A, Carlsson J, Gyllenstrand N, Lagercrantz U, Sundstrom JF (2009) Non-radioactive in situ hybridization protocol applicable for Norway spruce and a range of plant species. J Vis Exp 23:43–48

Kim MJ, Lim GH, Kim ES, Ko CB, Yang KY, Jeong JA, Lee MC, Kim CS (2007) Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochem Biophys Res Commun 354:440–446

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

Li FH, Fu FL, Sha LN, Li WC (2007) Identification of drought-responsive genes from maize inbred lines. J Plant Physiol Mol Biol 33(6):607–611

Luo H, Song F, Zheng Z (2005) Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. J Exp Bot 56(420):2673–2682

Mane SP, Vasquez-Robinet C, Sioson AA, Heath LS, Grene R (2007) Early PLDα-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis. J Exp Bot 58(2):241–252

Marino HJ, Cook P, Miller KS (2003) Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and Real-Time RT-PCR. J Immunol Meth 283:291–306

Marino R, Ponnaiah M, Krajewski P, Frova C, Gianfranceschi L, Enrico M, Sari-Gorla P (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Genet Genom 281:163–179

Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131:5981–5990

Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553–559

Moreira RS, Medri ME, Neumaier N, Lemos NG, Brogin RL, Marcelino FC, de Oliveira MCN, Farias JRB, Abdelnoor RV, Nepomuceno AL (2010) Cloning and quantitative expression analysis of drought-induced genes in soybean. Genet Mol Res 9(2):858–867

Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: I. response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci 44:797–805

Olsson ASB, Engstrom P, Soderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677

Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed MicroRNAs by comprehensive Real-Time Polymerase Chain Reaction profiling and small RNA sequencing. Plant Physiol 150(3):1541–1555

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman JF, Feltus A, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman M, Ware D, Westhoff P, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

Ramakers C, Ruitjer JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 13:62–66

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

Rocha GCG, Correa RL, Borges ACN, Sa CBP, Ferreira MA (2005) Identification and characterization of homeobox genes in Eucalyptus. Genet Mol Biol 28(3):165–173

Ruth C, Martin VG, Hollenbeck T, James E, Dombrowski G (2008) Evaluation of reference genes for quantitative RT-PCR in Lolium perenne. Crop Sci 48:1881–1887

Sadelin A, Wasserman W (2004) Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics. J Mol Biol 338(2):207–215

Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

Scholander PF, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Sci 148:339–346

Seo PJ, Park CM (2009) Auxin homeostasis during lateral root development under drought condition. Plant Signal Behav 4(10):1002–1004

Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

Shaw LM, McIntyre CL, Gresshoff PM, Xue GP (2009) Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics 9:485–498

Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

Tsuda K, Tsuji T, Hirose S, Yamazaki K (2004) Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol 45(2):225–231

Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

Xiao-feng D, Feng-ling FU, Na NI, Wan-chen LI (2009) Differential gene expression in response to drought stress in maize seedling. Agril Sci China 8(7):767–776

Yang SS, Valdés-López O, Xu WW, Bucciarellil B, Gronwald JW, Hernández G, Vancel CP (2010) Transcript profiling of common bean (Phaseolus vulgaris L.) using the genechip soybean genome array: Optimizing analysis by masking biased probes. BMC Plant Biol 10:1–58

Zhang JM, Liu C, Shi YS, Song YC, Bai BZ, Li Y, Wang TY (2004) QTL analysis of parameters related to flowering in maize under drought stress and normal irrigation condition. J Plant Gen Res 5:161–165

Zhou S, Bechner MC, Place M, Churas CP, Pape L, Leong SA, Runnheim R, Forrest DK, Goldstein S, Livny M, Schwartz DC (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8:270–278