Quantitative Progress Evaluation of Post-stroke Patients Using a Novel Bimanual Cable-driven Robot

Thiago Alves1, Rogério Sales Gonçalves1, Giuseppe Carbone2
1Laboratory of Automation and Robotics, School of Mechanical Engineering, Federal University of Uberlândia, Uberlândia, 38400-902, Brazil
2Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

WHO, World Health Organization, [2021–03–02], https://www.who.int/

Tappeiner, L., Ottaviano, E., & Husty, M. L. (2018). Mechanisms and Machine Science,  Cham: Springer, Zug, Switzerland, 50, 174–181.

Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience, 10, 1–22.

Nijenhuis, S. M., Prange, G. B., Amirabdollahian, F., Sale, P., Infarinato, F., Nasr, N., Mountain, G., Hermens, H. J., Stienen, A. H. A., Buurke, J. H., & Rietman, J. S. (2015). Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 12, 89.

Gonçalves, R. S., Alves, T., Carbone, G., & Ceccarelli, M. (2020). Cable-driven robots in physical rehabilitation. In M. K. Habib (Ed.), Advances in Computational Intelligence and Robotics (pp. 52–96). Hershey, IGI Global.

Ceccarelli, M., & Romdhane, L. (2010). Design issues for human-machine platform interface in cable based parallel manipulators for physiotherapy applications. Journal of Zhejiang University Science A, 11, 231–239.

Prange, G. B., Kottink, A. I. R., Buurke, J. H., Eckhardt, M. M., van Keulen-Rouweler, B. J., Ribbers, G. M., & Rietman, J. S. (2015). The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabilitation and Neural Repair, 29, 174–182.

Rosati, G., Masiero, S., & Rossi, A. (2017). On the use of cable-driven robots in early inpatient stroke rehabilitation. In G. Boschetti & A. Gasparetto (Eds.), Advances in Italian Mechanism Science (pp. 551–558). Italy: Springer. 47.

Nunes, W. M., Rodrigues, L. A. O., Oliveira, L. P., Ribeiro, J. F., Carvalho, J. C. M., Gonçalves, R. S. (2011) Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements, International Conference on Rehabilitation Robotics, Zurich, Switzerland

Tyromotion, D. [2021–09–09], https://tyromotion.com/en/produkte/diego/.

Carbone, G., Gherman, B., Ulinici, J., Vaida, C., & Pisla, D. (2017). Design issues for an inherently safe robotic rehabilitation device. In C. Ferraresi & G. Quaglia (Eds.), Mechanisms and Machine Science: Advances in Service and Industrial Robotics (Vol. 49). Cham: Springer, Zug, Switzerland.

Boschetti, G., Carbone, G., & Passarini, C. (2019). Cable failure operation strategy for a rehabilitation cable-driven robot. Robotics, 8, 17.

Laribi, M. A., Carbone, G., & Zeghloul, S. (2019). On the optimal design of cable driven parallel robot with a prescribed workspace for upper limb rehabilitation tasks. Journal of Bionic Engineering, 16, 503–513.

Cafolla, D., Russo, M. E., & Carbone, G. (2019). CUBE, a Cable-driven device for limb rehabilitation. Journal of Bionic Engineering, 16, 492–502.

Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M. A., & Urizar, M. (2021). Design and experimental characterization of L-CADEL v2, an assistive device for elbow motion. Sensors, 21, 5149.

Russo, M., & Ceccarelli, M. (2020). Analysis of a wearable robotic system for ankle rehabilitation. Machines, 8, 48.

Johnson, M. J., Vanderloos, H. F. M., Burgar, C. G., Shor, P., & Leifer, L. J. (2005). Experimental results using force-feedback cueing in robot-assisted stroke therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 335–348.

Trlep, M., Mihelj, M., Puh, M., & Munih, M. (2011). Rehabilitation robot with patient-cooperative control for bimanual training of hemiparetic subjects. Advanced Robotics, 25, 1949–1968.

Aguiar, P. M., Burdet, E., Caurin, G. A. P., Aroca, R. V., Pedro, L. M. (2017). Instrumented module for investigation of contact forces for use in rehabilitation and assessment of bimanual functionalities. 24th ABCM International Congress of Mechanical Engineering, Curitiba, PR, Brazil.

Cardoso, L. R. L., Matelleto, M. N., Aguiar, P. M., Burdet, E., Caurin, G. A. P., Aroca, R. V., Pedro, L. M. (2017) Upper limb rehabilitation through bicycle controlling. 24th ABCM International Congress of Mechanical Engineering, Curitiba, PR, Brazil

Lim, W. B., Yang, G., Yeo, S. H., & Mustafa, S. K. (2011). A generic force-closure analysis algorithm for cable-driven parallel manipulators. Mechanism and Machine Theory, 46, 1265–1275.

Ming, A., & Higuchi, T. (1994). Study on multiple degree-of-freedom positioning mechanism using wires (Part 1). Journal of the Japan Society of Precision Engineering, 28, 131–138.

Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28, 922–931.

Zhang, S., Cao, D., Min, H., Li, S., & Zhang, X. (2020). Design and wrench-feasible workspace analysis of a cable-driven hybrid joint. International Journal of Advanced Robotic Systems, 17, 1–14.

Garofalo, G., Mansfeld, N., Jankowski, J., Ott, C. (2019.) Sliding mode momentum observers for estimation of external torques and joint acceleration. Proceedings—IEEE International Conference on Robotics and Automation, (pp. 6117–6123) Montreal, Canada.

Wang, R., Li, Y. (2021) Analysis and multi-objective optimal design of a planar differentially driven cable parallel robot. Robotica, (pp. 1–17). Cambridge University Press, Cambridge, UK. 04 May 2021. https://doi.org/10.1017/S0263574721000266

Costa, M. V. O. (2018). Force capability of planar cable-driven robots, Master Thesis, Federal University of Santa Catarina, Florianopolis, SC, Brazil

Mehrholz, J., Pohl, M., Platz, T., Platz, T., Kugler, J., Elsner, B. (2015). Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews (vol. 11., pp. 1–112). John Wiley & Sons, Ltd.

Oyman, E., Korkut, M., Ylmaz, C., Bayraktaroglu, Z., Arslan, M. (2021). Design and control of a cable-driven rehabilitation robot for upper and lower limbs. Robotica, (pp. 1–37). Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/S0263574721000357. Accessed 19 Apr 2021.

Masiero, S., Poli, P., Rosati, G., Zanotto, D., Iosa, M., Paolucci, S., & Morone, G. (2014). The value of robotic systems in stroke rehabilitation. Expert Review of Medical Devices, 11, 187–198.

Masiero, S., Armani, M., & Rosati, G. (2011). Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial. Journal of Rehabilitation Research and Development, 48, 355–366.

Prange, G. B., Kottink, A. I. R., Buurke, J. H., Rietman, J. S. (2013). Application of arm support training in sub-acute stroke rehabilitation: first results on effectiveness and user experiences. IEEE International Conference on Rehabilitation Robotics, Seattle, USA.

Masiero, S., Celia, A., Rosati, G., & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of Physical Medicine and Rehabilitation, 88, 142–149.

Masiero, S., Armani, M., Ferlini, G., Rosati, G., & Rossi, A. (2014). Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabilitation and Neural Repair, 28, 377–386.

Singh, D. K. A., Nordin, N. A. M., Aziz, A. A., Zarim, S. N. A., Kooi, L. B., Ching, S. L. (2013). Virtual reality balance games to improve lower limb function among adults with chronic stroke. Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe '13) (pp. 1–3). Midview City, Singapore.

Alves, T., Gonçalves, R. S., Carbone, G., Ceccarellli, M. (2019). Cable-driven robots for circular trajectory exercises in rehabilitation, 25th ABCM International Congress of Mechanical Engineering, Uberlândia, MG, Brazil

Blanding, D. L. (1992). Principles of Exact Constraint Mechanical Design. [S.I.], Eastman Kodak Company, Rochester, USA. 

Ibarra, J. C. P. (2014) Adaptive impedance control applied to robotic ankle rehabilitation, Master Thesis, São Paulo University, São Paulo, Brazil

Roy, A., Forrester, L. W., & Macko, R. F. (2011). Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke. Journal of Rehabilitation Research and Development, 48, 417–429.

IMI, Intrinsic Motivation Inventory (IMI), [2021–08–08], http://selfdeterminationtheory.org/intrinsic-motivation-inventory