Quantitative Heat-Kernel Estimates for Diffusions with Distributional Drift

Springer Science and Business Media LLC - Tập 59 - Trang 731-752 - 2022
Nicolas Perkowski1, Willem van Zuijlen2
1Free University of Berlin, Berlin, Germany
2Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

Tóm tắt

We consider the stochastic differential equation on $\mathbb {R}^{d}$ given by $$ \begin{array}{@{}rcl@{}} \mathrm{d} X_{t} = b(t,X_{t}) \mathrm{d} t + \mathrm{d} B_{t}, \end{array} $$ where B is a Brownian motion and b is considered to be a distribution of regularity $ > -\frac 12$ . We show that the martingale solution of the SDE has a transition kernel Γt and prove upper and lower heat-kernel estimates for Γt with explicit dependence on t and the norm of b.

Tài liệu tham khảo

Andrews, G.E., Askey, R., Roy, R..: Special functions volume 71 of encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (1999) Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, volume 343 of grundlehren der mathematischen wissenschaften [fundamental principles of mathematical Sciences]. Springer, Heidelberg (2011) Bass, R. F., Chen, Z.Q.: Stochastic differential equations for D,irichlet processes. Probab. Theory Related Fields 121(3), 422–446 (2001) Brox, T.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14(4), 1206–1218 (1986) Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. Ann. Probab. 46(3), 1710–1763 (2018) Delarue, F., Diel, R.: Rough paths and 1d SDE with a time dependent distributional drift: application to polymers. Probab. Theory Related Fields 165(1-2), 1–63 (2016) Flandoli, F., Issoglio, E., Russo, F.: Multidimensional stochastic differential equations with distributional drift. Trans. Amer. Math. Soc. 369(3), 1665–1688 (2017) Flandoli, F., Russo, F., Wol, J.: Some SDEs with distributional drift. I. General calculus. Osaka J. Math. 40(2), 493–542 (2003) Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1964) Friedman, A.: Stochastic differential equations and applications. Vol. 1. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, Probability and mathematical statistics, Vol. 28 (1975) Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths, Volume 120 of Cambridge Studies in Advanced Mathematics. Cambridge, Universit Press (2010). Theory and applications Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3(e6), 75 (2015) Gubinelli, M., Perkowski, N.: KPZ, reloaded. Comm. Math Phys. 349(1), 165–269 (2017) Hairer, M.: Rough stochastic PDEs. Comm Pure Appl. Math. 64 (11), 1547–1585 (2011) Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013) König, W.: The Parabolic Anderson Model. Pathways in Mathematics. Birkhäuser, Springer (2016). Random walk in random potential König, W., Perkowski, N., van Zuijlen, W.B.: Long-time asymptotics of the two-dimensional parabolic Anderson model with white-noise potential. arXiv:2009.11611 (2020) Martin, J.: Refinements of the solution theory for singular SPDEs. PhD thesis Humboldt-Universität zu Berlin (2018) Martin, J., Perkowski, N.: Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model. Ann. Inst. Henri poincaré Probab. Stat. 55(4), 2058–2110 (2019) Stroock, D.W.: Partial differential equations for probabilists, volume 112 of cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (2008) Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Classics in Mathematics. Springer-Verlag, Berlin (2006). Reprint of the 1997 edition Zhang, X., Zhao, G.: Heat kernel and ergodicity of SDEs with distributional drifts. arXiv:1710.10537 (2017)