Quantile regression for robust inference on varying coefficient partially nonlinear models
Tóm tắt
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.
Tài liệu tham khảo
Ahmad, I., Leelahanon, S., & Li, Q. (2005). Efficient estimation of a semiparametric partially linear varying coefficient model. The Annals of Statistics, 33(1), 258–283.
Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37(4), 373–384.
Carroll, R., Fan, J., Gijbels, J., et al. (1997). Generalized partially linear single-index models. Journal of the American Statistical Association, 92(438), 477–489.
Fan, J., & Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 11(6), 1031–1057.
Hjort, N., & Pollard, D. (1993). Asymptotics for minimisers of convex processes. Unpublished, arXiv:1107.3806.
Honda, T. (2004). Quantile regression in varying coefficient models. Journal Statistical Planning and Inference, 121(1), 113–125.
Kai, B., Li, R., & Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. The Annals of Statistics, 39(1), 305–332.
Knight, K. (1998). Limiting distributions for L1 regression estimators under general conditions. The Annals of Statistics, 26(2), 755–770.
Koenker, R. (2005). Quantile regression. Cambridge University Press: Cambridge.
Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50.
Kong, E., & Xia, Y. (2012). A single-index quantile regression model and its estimation. Econometric Theory, 28(4), 730–768.
Lesage, J., & Pace, R. (2009). Introduction to spatial econometrics. CRC Press: Boca Raton.
Li, T., & Mei, C. (2013). Estimation and inference for varying coefficient partially nonlinear models. Journal of Statistical Planning and Inference, 143(11), 2023–2037.
Li, R., & Nie, L. (2008). Efficient statistical inference procedures for partially nonlinear models and their applications. Bioemtrics, 64(3), 904–911.
Mack, Y., & Silverman, B. (1982). Weak and strong uniform consistency of kernel regression estimates. Probability Theory and Related Fields, 61(3), 405–415.
Qian, Y., & Huang, Z. (2016). Statistical inference for a varying-coefficient partially nonlinear model with measurement errors. Statistical Methodology, 32, 122–130.
Ruppert, D., Sheather, S. J., & Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association, 90(432), 1257–1270.
Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B., 58(1), 267–288.
Wang, H. J., Zhu, Z., & Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. The Annals of Statistics, 37(6B), 3841–3866.
Wang, Q., & Xue, L. (2011). Statistical estimation in partially-varying-coefficient single-index models. Journal of Multivariate Analysis, 102(1), 1–19.
Wu, T. Z., Yu, K., & Yan, Yu. (2010). Single-index quantile regression. Journal of Multivariate Analysis, 101(7), 1607–1621.
Xia, Y., Zhang, W., & Tong, H. (2004). Efficient estimation for semivarying-coefficient models. Biometrika, 91(3), 661–681.
Yang, J., & Yang, H. (2016). Smooth-threshold estimating equations for varying coefficient partially nonlinear models based on orthogonality-projection method. Journal of Computational and Applied Mathematics, 302, 24–37.
Yu, K., & Jones, M. C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93(441), 228–237.
Yu, K., & Lu, Z. (2004). Local linear additive quantile regression. Scandinavian Journal of Statistics, 31(3), 333–346.