Quantifying tumor-infiltrating immune cells from transcriptomics data

Francesca Finotello1, Zlatko Trajanoski1
1Biocenter, Division for Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330. https://doi.org/10.1038/nature21349

Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012

Finotello F, Trajanoski Z (2017) New strategies for cancer immunotherapy: targeting regulatory T cells. Genome Med 9:10. https://doi.org/10.1186/s13073-017-0402-8

Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. https://doi.org/10.1038/nrc.2016.36

Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. https://doi.org/10.1038/nbt1486

Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

Gaujoux R, Seoighe C (2013) CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29:2211–2212. https://doi.org/10.1093/bioinformatics/btt351

Angelova M, Charoentong P, Hackl H et al (2015) Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 16:64. https://doi.org/10.1186/s13059-015-0620-6

Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262. https://doi.org/10.1016/j.celrep.2016.12.019

Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

Tappeiner E, Finotello F, Charoentong P et al (2017) TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 33:3140–3141. https://doi.org/10.1093/bioinformatics/btx377

Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. https://doi.org/10.1186/s13059-016-1070-5

Abbas AR, Wolslegel K, Seshasayee D et al (2009) Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4:e6098. https://doi.org/10.1371/journal.pone.0006098

Gong T, Hartmann N, Kohane IS et al (2011) Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS ONE 6:e27156. https://doi.org/10.1371/journal.pone.0027156

Gong T, Szustakowski JD (2013) DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29:1083–1085. https://doi.org/10.1093/bioinformatics/btt090

Qiao W, Quon G, Csaszar E et al (2012) PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput Biol 8:e1002838. https://doi.org/10.1371/journal.pcbi.1002838

Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. https://doi.org/10.1186/s13059-016-1028-7

Racle J, de Jonge K, Baumgaertner P et al (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLIFE 6:e26476. https://doi.org/10.7554/eLife.26476

Finotello F, Mayer C, Plattner C et al (2017) quanTIseq: quantifying immune contexture of human tumors. bioRxiv. https://doi.org/10.1101/223180

Repsilber D, Kern S, Telaar A et al (2010) Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinform 11:27. https://doi.org/10.1186/1471-2105-11-27

Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101:4164–4169. https://doi.org/10.1073/pnas.0308531101

Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems 13. MIT press, pp 556–562

Zhong Y, Wan Y-W, Pang K et al (2013) Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinform 14:89. https://doi.org/10.1186/1471-2105-14-89

Liebner DA, Huang K, Parvin JD (2014) MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30:682–689. https://doi.org/10.1093/bioinformatics/btt566

Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112. https://doi.org/10.1038/nature08460

Lizio M, Harshbarger J, Shimoji H et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16:22. https://doi.org/10.1186/s13059-014-0560-6

ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

Fernández JM, de la Torre V, Richardson D et al (2016) The BLUEPRINT data analysis portal. Cell Syst 3:491–495.e5. https://doi.org/10.1016/j.cels.2016.10.021

Abbas AR, Baldwin D, Ma Y et al (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331. https://doi.org/10.1038/sj.gene.6364173

Mabbott NA, Baillie JK, Brown H et al (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632. https://doi.org/10.1186/1471-2164-14-632

Novershtern N, Subramanian A, Lawton LN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309. https://doi.org/10.1016/j.cell.2011.01.004

Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7

Shen-Orr SS, Gaujoux R (2013) Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol 25:571–578. https://doi.org/10.1016/j.coi.2013.09.015

Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. https://doi.org/10.1038/nm.3909

Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. https://doi.org/10.1093/biostatistics/kxj037

Li B, Liu JS, Liu XS (2017) Revisit linear regression-based deconvolution methods for tumor gene expression data. Genome Biol 18:127. https://doi.org/10.1186/s13059-017-1256-5

Li T, Fan J, Wang B et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77:e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307

Tirosh I, Izar B, Prakadan SM et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-sEq. Science 352:189–196. https://doi.org/10.1126/science.aad0501

Altboum Z, Steuerman Y, David E et al (2014) Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol Syst Biol 10:720. https://doi.org/10.1002/msb.134947

Frishberg A, Steuerman Y, Gat-Viks I (2015) CoD: inferring immune-cell quantities related to disease states. Bioinformatics 31:3961–3969. https://doi.org/10.1093/bioinformatics/btv498

Chen Z, Huang A, Sun J et al (2017) Inference of immune cell composition on the expression profiles of mouse tissue. Sci Rep 7:40508. https://doi.org/10.1038/srep40508

Frishberg A, Brodt A, Steuerman Y, Gat-Viks I (2016) ImmQuant: a user-friendly tool for inferring immune cell-type composition from gene-expression data. Bioinformatics 32:3842–3843. https://doi.org/10.1093/bioinformatics/btw535

Varn FS, Wang Y, Mullins DW et al (2017) Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment. Cancer Res 77:1271–1282. https://doi.org/10.1158/0008-5472.CAN-16-2490

Venet D, Pecasse F, Maenhaut C, Bersini H (2001) Separation of samples into their constituents using gene expression data. Bioinformatics 17(Suppl 1):S279–S287

Lähdesmäki H, Shmulevich L, Dunmire V et al (2005) In silico microdissection of microarray data from heterogeneous cell populations. BMC Bioinform 6:54. https://doi.org/10.1186/1471-2105-6-54

Gaujoux R, Seoighe C (2012) Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study. Infect Genet Evol 12:913–921. https://doi.org/10.1016/j.meegid.2011.08.014

Quon G, Haider S, Deshwar AG et al (2013) Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med 5:29. https://doi.org/10.1186/gm433

Anghel CV, Quon G, Haider S et al (2015) ISOpureR: an R implementation of a computational purification algorithm of mixed tumour profiles. BMC Bioinform 16:156. https://doi.org/10.1186/s12859-015-0597-x

Ahn J, Yuan Y, Parmigiani G et al (2013) DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 29:1865–1871. https://doi.org/10.1093/bioinformatics/btt301

Holik AZ, Law CW, Liu R et al (2017) RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods. Nucleic Acids Res 45:e30. https://doi.org/10.1093/nar/gkw1063

Petitprez F, Vano YA, Becht E et al (2017) Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-017-2058-z

Newman AM, Gentles AJ, Liu CL et al (2017) Data normalization considerations for digital tumor dissection. Genome Biol 18:128. https://doi.org/10.1186/s13059-017-1257-4

Mohammadi S, Zuckerman NS, Goldsmith AJ, Grama A (2017) A critical survey of deconvolution methods for separating cell-types in complex tissues. arXiv. https://doi.org/10.1109/JPROC.2016.2607121

Regev A, Teichmann S, Lander ES et al (2017) The human cell atlas. bioRxiv. https://doi.org/10.1101/121202

Finotello F, Di Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Br Funct Genomics 14:130–142. https://doi.org/10.1093/bfgp/elu035

Ali HR, Chlon L, Pharoah PDP et al (2016) Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med 13:e1002194. https://doi.org/10.1371/journal.pmed.1002194

Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29

Jin H, Wan Y-W, Liu Z (2017) Comprehensive evaluation of RNA-seq quantification methods for linearity. BMC Bioinform 18:117. https://doi.org/10.1186/s12859-017-1526-y

Zhong Y, Liu Z (2011) Gene expression deconvolution in linear space. Nat Methods 9:8–9. https://doi.org/10.1038/nmeth.1830

Marinov GK, Williams BA, McCue K et al (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510. https://doi.org/10.1101/gr.161034.113

Schelker M, Feau S, Du J et al (2017) Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun 8:2032. https://doi.org/10.1038/s41467-017-02289-3

Tsujikawa T, Kumar S, Borkar RN et al (2017) Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 19:203–217. https://doi.org/10.1016/j.celrep.2017.03.037

Hackl H, Charoentong P, Finotello F, Trajanoski Z (2016) Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet 17:441–458. https://doi.org/10.1038/nrg.2016.67