Quantifying social costs of coal-fired power plant generation
Tài liệu tham khảo
AlRafea, 2016, Cost-analysis of health impacts associated with emissions from combined cycle power plant, J. Clean. Prod., 139, 1408, 10.1016/j.jclepro.2016.09.001
Agora Energiewende, 2019. A word on low cost renewables. https://www.agora-energiewende.de/fileadmin2/Projekte/2018/A_word_on/Agora_Energiewende_a_word_on_lowcost-renewables_WEB.pdf (accessed 24 November 2021).
Aguirre-Villegas, 2017, Case history of environmental impacts of an Indonesian coal supply chain, J. Clean. Prod., 157, 47, 10.1016/j.jclepro.2017.03.232
Bai, 2018, A review on health cost accounting of air pollution in China, Environ. Int., 120, 279, 10.1016/j.envint.2018.08.001
Büke, 2011, Estimation of the health benefits of controlling air pollution from the Yatağan coal-fired power plant, Environ. Sci. Policy, 14, 1113, 10.1016/j.envsci.2011.05.014
Burtraw, 2012
Chakravarty, 2021, There is no economic case for new coal plants in India, World Dev. Perspect., 24, 10.1016/j.wdp.2021.100373
Chary, 2018, Cultivating biomass locally or importing it? LCA of biomass provision scenarios for cleaner electricity production in a small tropical island, Biomass Bioenergy, 110, 1, 10.1016/j.biombioe.2018.01.009
Cheng, 2015, A multi-region optimization planning model for China's power sector, Appl. Energy, 137, 413, 10.1016/j.apenergy.2014.10.023
CNN Indonesia, 2021. Konsumsi listrik capai 187,78 TWh per September 2021. https://www.cnnindonesia.com/ekonomi/20211017103219-85-708832/konsumsi-listrik-capai-18778-twh-per-september-2021 (accessed 17 October 2021, in Indonesian).
Cong, 2013, An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization, Renew. Sustain. Energy Rev, 17, 94, 10.1016/j.rser.2012.09.005
Connolly, 2010, A review of computer tools for analyzing the integration of renewable energy into various energy systems, Appl. Energy, 87, 1059, 10.1016/j.apenergy.2009.09.026
2017
Enerdata, 2021. Global statistical database. https://www.enerdata.net (accessed 17 January 2022).
Frankhauser, 1996, Climate change costs: Recent advancements in the economic assessment, Energy Policy, 24, 665, 10.1016/0301-4215(96)00056-0
Friedrich, R., Bickel, P., 2001. Estimation of external costs using the Impact-Pathway-Approach: Results from the ExternE project series. TA-Datenbank-Nachrichten, Nr. 3/10. Jahrgang, September 2001.
Gunawan, 2022, Trends of clean coal technologies for power generation development in Indonesia, Int. J. Innov. Sci. Res. Technol., 7, 85
Gürtürk, 2019, Economic feasibility of solar power plants based on PV module with levelized cost analysis, Energy, 171, 866, 10.1016/j.energy.2019.01.090
Guttikunda, 2014, Atmospheric emissions and pollution from the coal-fired thermal power plants in India, Atmos. Environ., 92, 449, 10.1016/j.atmosenv.2014.04.057
Herdiyan, 2021. Teknologi maju dukung PLTU ramah lingkungan. https://ekonomi.bisnis.com/read/20210109/44/1341405/teknologi-maju-dukung-pltu-ramah-lingkungan (accessed 9 January 2021, in Indonesian).
Hirschberg, 2004, Health and environmental impacts of China's current and future electricity supply, with associated external costs, Int. J. Glob. Energy Issues, 22, 155, 10.1504/IJGEI.2004.005906
Howard, 2019, Health benefits and control costs of tightening particulate matter emissions standards for coal power plants−The case of Northeast Brazil, Environ. Int., 124, 420, 10.1016/j.envint.2019.01.029
Idris, 2016, Energy pricing and policies development for geothermal energy in Indonesia, Int. J. Renew. Energy, 11, 17
Indonesia Agency for Assessment and Application of Technology, 2021. Outlook Energy Indonesia. Centre of Resources Energy Technology Development, Jakarta.
2017
2007
Karkour, 2020, External-cost estimation of electricity generation in G20 countries: Case study using a global life-cycle impact-assessment method, Sustainability, 12, 2002, 10.3390/su12052002
Klaassen, 2007, Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO, Energy Policy, 35, 815, 10.1016/j.enpol.2006.03.007
Kleemann, 1994
Koltsaklis, 2014, A spatial multi-period long-term energy planning model: A case study of the Greek power system, Appl. Energy, 115, 456, 10.1016/j.apenergy.2013.10.042
Koltsaklis, 2015, A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints, Appl. Energy, 158, 310, 10.1016/j.apenergy.2015.08.054
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, 2022. Capaian Kinerja Sektor ESDM Tahun 2021 & Rencana 2022. https://www.esdm.go.id/assets/media/content/content-capaian-kinerja-sektor-esdm-tahun-2021-dan-rencana-tahun-2022.pdf (accessed 12 January 2022, in Indonesian).
Kost, C., Shammugam, S., Julch, V., Nguyen, H.-T., Schlegl, T., 2018. Levelized cost of electricity renewable energy technologies. https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed 20 December 2021).
Lai, C.S., McCulloch, M.D., 2016. Levelized cost of energy for PV and grid-scale energy storage systems. arXiv preprint arXiv:1609.06000.
Lee, 2016, Integrated framework for the external cost assessment of nuclear power plant accident considering risk aversion: The Korean case, Energy Policy, 92, 111, 10.1016/j.enpol.2016.01.035
Li, 2015, The implications of CO2 price for China's power sector decarbonization, Appl. Energy, 146, 53, 10.1016/j.apenergy.2015.01.105
Lu, 2020, Evolution of external health costs of electricity generation in the Baltic States, Int. J. Environ. Res. Public Health, 17, 5265, 10.3390/ijerph17155265
Meier, 2014
2018
Nasrullah, 2016, Cost calculation of damage, and carbon in externalities cost power plant, Ketenagalistrikan dan Energi Terbarukan, 15, 9
Pearce, 2006
Putri, C.A. (Producer), 2022. Pajak karbon batal berlaku 1 Juli: Sri Mulyani buka suara. CNBC Indonesia. https://www.cnbcindonesia.com/news/20220627174616-4-350788/pajak-karbon-batal-berlaku-1-juli-sri-mulyani-buka-suara (accessed 27 June 2022, in Indonesian).
Rafaj, 2007, Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model, Energy Policy, 35, 828, 10.1016/j.enpol.2006.03.003
Rentizelas, 2014, Incorporating life cycle external cost in optimization of the electricity generation mix, Energy Policy, 65, 134, 10.1016/j.enpol.2013.10.023
Restrepo, 2015, A life cycle assessment of the Brazilian coal used for electric power generation, J. Clean. Prod., 92, 179, 10.1016/j.jclepro.2014.12.065
Rimos, 2015, Resource depletion impact assessment: Impacts of a natural gas scarcity in Australia, Sustain. Prod. Consum., 3, 45, 10.1016/j.spc.2015.08.003
BP, 2021. Approximate conversion factors – Statistical review of world energy. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-approximate-conversion-factors.pdf (accessed 8 October 2021).
Rizkyansah, O., 2021. Laporan kerja praktek: Racing ground fault pada sistem DC PLTU Tenayan unit 2. http://eprints.polbeng.ac.id/3139/13/4.%20KP-3204181209-Full%20Text.pdf (accessed 16 December 2022, in Indonesian).
Rokhmawati, 2021, Comparison of power plant portfolios under the no energy mix target and national energy mix target using the mean–variance model, Energy Rep., 7, 4850, 10.1016/j.egyr.2021.07.137
Spadaro, 2002
Spadaro, 2002
Statistics Indonesia, 2022. Rupiah credit interest rates by group of banks 2022. https://www.bps.go.id/indicator/13/383/1/suku-bunga-kredit-rupiah-menurut-kelompok-bank.html (accessed 5 November 2022).
Sugiyono, A., 2013. Perbandingan biaya sosial dari pembangkit listrik energi fosil dan pembangkit listrik energi baru terbarukan. Paper presented at the Seminar Nasional Pengembangan Energi Nuklir VI, Jakarta (in Indonesian).
Sundqvist, 2004, What causes the disparity of electricity externality estimates?, Energy Policy, 32, 1753, 10.1016/S0301-4215(03)00165-4
Tietenberg, 2011
Usman, 2016, Prospect for CO2 EOR to offset the cost of CCS at coal power plants, Sci. Contrib. Oil Gas, 39, 107
Venkataraman, 2018, Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. Chem. Phys., 18, 8017, 10.5194/acp-18-8017-2018
Wahid, 2006, Perbandingan biaya pembangkitan pembangkit listrik di Indonesia
Wang, 2019, Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective, J. Environ. Manage., 246, 758, 10.1016/j.jenvman.2019.06.047
Zhang, 2012, A multi-period modelling and optimization approach to the planning of China's power sector with consideration of carbon dioxide mitigation, Comput. Chem. Eng., 37, 227, 10.1016/j.compchemeng.2011.09.001
Zhang, 2015, More efforts, more benefits: Air pollutant control of coal-fired power plants in China, Energy, 80, 1, 10.1016/j.energy.2014.11.029
Zhu, 2020, Life-cycle-based water footprint assessment of coal-fired power generation in China, J. Clean. Prod., 254, 10.1016/j.jclepro.2020.120098
PT PLN, 2020. Statistik PLN 2020. PT PLN (Persero), Jakarta (in Indonesian).
World Health Organization, 2018. Ambient (Outdoor) air quality and health. http://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed 20 December 2020).