Quantifying proportions of different material sources to loess based on a grid search and Monte Carlo model: A case study of the Ili Valley, Central Asia
Tài liệu tham khảo
Blocken, 2006, The influence of the wind-blocking effect by a building on its wind-driven rain exposure, J. Wind Eng. Ind. Aerodyn., 94, 101, 10.1016/j.jweia.2005.11.001
Blocken, 2011, Computational analysis of the performance of a venturi-shaped roof for natural ventilation: Venturi-effect versus wind-blocking effect, Comput. Fluids, 48, 202, 10.1016/j.compfluid.2011.04.012
Chen, 2011, Geochemical studies on the source region of Asian dust, Sci. China Earth Sci., 54, 1279, 10.1007/s11430-011-4269-z
Chen, 2017, Size-differentiated REE characteristics and environmental significance of aeolian sediments in the Ili Basin of Xinjiang, NW China, J. Asian Earth Sci., 143, 30, 10.1016/j.jseaes.2017.03.030
Chen, 2021, Provenance of sub-aerial surface sediments in the Tarim Basin, Western China, CATENA, 198, 10.1016/j.catena.2020.105014
Cheng, 2020, Heavy mineral assemblages and sedimentation rates of eastern Central Asian loess: Paleoenvironmental implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 551, 10.1016/j.palaeo.2020.109747
Condie, 1995, Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA, Geochim. Cosmochim. Acta, 59, 279, 10.1016/0016-7037(94)00280-Y
Derbyshire, 1998, Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record, J. Arid Environ., 39, 497, 10.1006/jare.1997.0369
Dinelli, 2013, Geochemical and mineralogical proxies for grain size in mudstones and siltstones from the Pleistocene and Holocene of the Po River alluvial plain, Italy, Spec. Pap. Geol. Soc. Am., 420, 25
Dufour, 2019, Chapter 1 - Finite-sample inference and nonstandard asymptotics with Monte Carlo tests and R, vol. 41, 3, 10.1016/bs.host.2019.05.001
Duszyński, 2019, Escarpment retreat in sedimentary tablelands and cuesta landscapes – Landforms, mechanisms and patterns, Earth Sci. Rev., 196, 10.1016/j.earscirev.2019.102890
Ferrat, 2011, Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau, Geochim. Cosmochim. Acta, 75, 6374, 10.1016/j.gca.2011.08.025
Fitzsimmons, 2020, Intersections between wind regimes, topography and sediment supply: Perspectives from aeolian landforms in Central Asia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 540, 10.1016/j.palaeo.2019.109531
Grousset, 2005, Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes, Chem. Geol., 222, 149, 10.1016/j.chemgeo.2005.05.006
Guan, 2016, Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chabhu lake basin: Implications for the origin, palaeoclimatic change and provenance, J. Asian Earth Sci., 117, 170, 10.1016/j.jseaes.2015.12.013
Hammersley, 1960, Monte Carlo methods for solving multivariable problems, Ann. N. Y. Acad. Sci., 86, 844, 10.1111/j.1749-6632.1960.tb42846.x
Han, 2019, Geochemical evidence for provenance diversity of loess in southern China and its implications for glacial aridification of the northern subtropical region, Quat. Sci. Rev., 212, 149, 10.1016/j.quascirev.2019.04.002
Hao, 2010, Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China, Quat. Sci. Rev., 29, 3317, 10.1016/j.quascirev.2010.08.004
Hayashi, 1997, Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada, Geochim. Cosmochim. Acta, 61, 4115, 10.1016/S0016-7037(97)00214-7
He, 2015, An improved Tabu search algorithm based on grid search used in the antenna parameters optimization, Math. Probl. Eng.
Hesterman, 2010, Maximum-likelihood estimation with a contracting-grid search algorithm, IEEE Trans. Nucl. Sci., 57, 1077, 10.1109/TNS.2010.2045898
Honda, 2014, Re–Os isotopic records in Pleistocene loess–paleosol sequences from the Yili Basin, northwestern China, Chem. Geol., 373, 71, 10.1016/j.chemgeo.2014.02.007
Jimenez, 2009, Finding optimal model parameters by deterministic and annealed focused grid search, Neurocomputing, 72, 2824, 10.1016/j.neucom.2008.09.024
Johnson, 1999, XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead, Adv. X-ray Anal., 41, 843
Kabanov, 2016, The upper Viséan–Serpukhovian in the type area for the Serpukhovian Stage (Moscow Basin, Russia): part 2. Bulk geochemistry and magnetic susceptibility, Geol. J., 51, 195, 10.1002/gj.2623
Lawrence, 2009, The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition, Chem. Geol., 267, 49, 10.1016/j.chemgeo.2009.02.005
Li, 2014, The distribution of geochemical elements in different grain-size fractions of desert sediments in Ili Valley of Xinjiang, China, J. Earth Environ., 5, 61
Li, 2020, Grain-size-dependent geochemical characteristics of Middle and Upper Pleistocene loess sequences from the Junggar Basin: Implications for the provenance of Chinese eolian deposits, Palaeogeogr. Palaeoclimatol. Palaeoecol., 538, 10.1016/j.palaeo.2019.109458
Li, 2020, Discussion of the paper “Loess genesis and worldwide distribution” by Yanrong Li, Wenhui Shi, Adnan Aydin, et al., Earth-Sci. Rev.
Li, 2016, Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis, Sci. Rep., 6
Li, 2018, New evidence for the provenance and formation of loess deposits in the Ili River Basin, Arid Central Asia, Aeolian Res., 35, 1, 10.1016/j.aeolia.2018.08.002
Li, 2018, Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin, Clim. Past, 14, 271, 10.5194/cp-14-271-2018
Li, 2020, Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models, Catena., 194, 10.1016/j.catena.2020.104808
Liu, 1985
Malkawi, 2001, Global search method for locating general slip surface using Monte Carlo techniques, ASCE, 127, 688
Malkawi, 2001, An efficient search method for finding the critical circular slip surface using the Monte Carlo technique, Can. Geotech. J., 38, 1081, 10.1139/t01-026
Nesbitt, 1992, Recent chemical weathering of basalts, Am. J. Sci., 292, 740, 10.2475/ajs.292.10.740
Nobakht, M., Shahgedanova, M., White, K.H., 2019. New inventory of dust sources in Central Asia derived from the daily MODIS imagery. E3S Web of Conferences. vol. 99, 01001.
Peng, 2016, Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, northern China, Quat. Res., 85, 290, 10.1016/j.yqres.2016.01.005
Pindoriya, 2011, Composite reliability evaluation using Monte Carlo simulation and Least Squares support Vector Classifier, IEEE Trans. Power Syst., 26, 2483, 10.1109/TPWRS.2011.2116048
Pye, 1995, The nature, origin and accumulation of loess, Quat. Sci. Rev., 14, 653, 10.1016/0277-3791(95)00047-X
Rudnick, 2003, Composition of the continental crust, vol. 3, 1
Sebastian, 2016, Robust near real-time estimation of physiological parameters from megapixel multispectral images with inverse Monte Carlo and random forest regression, Int. J. Comput. Assist. Radiol. Surg., 11, 909, 10.1007/s11548-016-1376-5
Seila, 1981
Sirola, 2006, Exhaustive global grid search in computing receiver position from modular satellite range measurements, JPCS, 52, 73
Song, 2012, A combined luminescence and radiocarbon dating study of the Ili loess, Central Asia, Quat. Geochronol., 10, 2, 10.1016/j.quageo.2012.04.005
Song, 2014, Distribution and composition of loess sediments in the Ili Basin, Central Asia, Quat Int., 334, 61, 10.1016/j.quaint.2013.12.053
Song, 2015, Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia, Quat. Geochronol., 30, 405, 10.1016/j.quageo.2015.01.012
Song, 2020, Spatio-temporal distribution of Quaternary loess across Central Asia, Palaeogeogr. Palaeoclimatol. Palaeoecol.
Sun, 2020, Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 550, 10.1016/j.palaeo.2020.109731
Sun, 2002, Source regions and formation of the loess sediments on the high mountain regions of northwestern China, Quat. Res., 58, 341, 10.1006/qres.2002.2381
Sun, 2019, Major and trace element compositions of surface sediments from the lower Bengal Fan: Implications for provenance discrimination and sedimentary environment, J. Asian Earth Sci., 184, 10.1016/j.jseaes.2019.104000
Syarif, 2016, SVM parameter optimization using grid search and genetic algorithm to improve classification performance, TELKOMNIKA, 14, 1502, 10.12928/telkomnika.v14i4.3956
Tsoar, 1994, Classics in physical geography revisited (Bagnold, R., 1941: the physics of blown sand and desert dunes. London, Methuen), Prog. Phys. Geogr., 18, 91, 10.1177/030913339401800105
Tsoar, 1987, Dust transport and the question of desert loess formation, Sedimentology, 34, 139, 10.1111/j.1365-3091.1987.tb00566.x
Wang, 2019, Optical dating of Holocene paleosol development and climate changes in the Yili Basin, arid Central Asia, Holocene., 29, 1068, 10.1177/0959683619831432
Wang, 2015, Geochemical evidence for seasonal variations in potential loess sources of the western Chinese Loess Plateau, Atmos. Environ., 120, 369, 10.1016/j.atmosenv.2015.09.009
Wang, 2018, The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment, Front. Earth Sci., 12, 86, 10.1007/s11707-017-0619-2
Wang, 2019, Fluvial sediments in the Alagxa Plateau as a dust source: iron mineralogical and geochemical evidence, J. Arid Land., 11, 217, 10.1007/s40333-019-0125-3
Xinjiang Integrated Expedition Team and Institute of Botany, C, 1978
Yang, 2008, Parameter characteristics and research meaning of regional geochemistry of Xinjiang, Xinjinag Geol., 26, 236
Ye, 2000, The mineral characteristics of loess and depositing environment in Yili Area, Xinjiang, Arid Zone Res., 17, 1
Ye, 2001, Study on magnetic susceptibility of loess and paleosol sequences in westerly region of Xinjiang, J. Desert Res., 21, 380
Zeng, 2013, Mineral composition and their weathering significance of Zhaosu loess-paleosol sequence in the Ili Basin, Xinjiang, Geol. Rev., 59, 575
Zeng, 2014, Magnetic susceptibility characteristics of near-surface loess in the Ili Basin, Xinjiang, J. Earth Environ., 5, 135
Zeng, 2019, The relationship between environmental factors and magnetic susceptibility in the Ili loess, Tianshan Mountains, Central Asia, Geol. J., 54, 1889, 10.1002/gj.3182
Zhang, 2012, Provenance of loess deposits in the Eastern Qinling Mountains (Central China) and their implications for the paleoenvironment, Quat. Sci. Rev., 43, 94, 10.1016/j.quascirev.2012.04.010
Zhang, 2013, Geochemical characteristics and environmental significance of Talede loess–paleosol sequences of Ili Basin in Central Asia, Environ. Earth Sci., 70, 2191, 10.1007/s12665-013-2323-1
Zhang, 2012, Brief communication "Assessment of change in temperature and precipitation over Xinjiang, China", Nat. Hazard Earth Sys., 12, 1327, 10.5194/nhess-12-1327-2012
Zhao, 2015, Holocene climate changes in westerly-dominated areas of Central Asia: evidence from optical dating of two loess sections in Tianshan Mountain, China, Quat. Geochronol., 30, 188, 10.1016/j.quageo.2015.04.002
Zhao, 2010, Glacial advances and ESR chronology of the Pochengzi Glaciation, Tianshan Mountains, China, Sci. China Earth Sci., 53, 403, 10.1007/s11430-009-0109-9
Zhao, 2019, Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source, Sci. China Earth Sci., 62, 1428, 10.1007/s11430-018-9354-y