Định lượng đầu vào nitơ và photpho từ hoạt động trồng trọt vào các nguồn nước ở các vùng Leningrad và Kaliningrad

Springer Science and Business Media LLC - Tập 194 - Trang 1-14 - 2022
Andrey Izmaylov1, Vladimir Popov2, Aleksandr Briukhanov2, Sergey Kondratyev3, Natalia Oblomkova2, Oleg Grevtsov4
1Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), Moscow, Russian Federation
2Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), Branch in Saint Petersburg, Saint Petersburg, Russian Federation
3Institute of Limnology of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
4Federal State Autonomous Body – Research Institute “Environmental Industrial Policy Centre”, Moscow Region, Russian Federation

Tóm tắt

Sự gia tăng cường độ nông nghiệp dẫn đến ô nhiễm môi trường lan tỏa cao hơn. Thành công trong kiểm soát ô nhiễm yêu cầu phải có sự giám sát liên tục các hoạt động canh tác, dữ liệu nền tảng đáng tin cậy và các mô hình tính toán đã được thử nghiệm để đánh giá định lượng lượng chất ô nhiễm lan tỏa. Nghiên cứu này nhằm mục tiêu định lượng các đầu vào nitơ (N) và photpho (P) hữu cơ từ phân bón vào môi trường biển từ các trang trại chăn nuôi lớn, đồng thời xác định hiệu ứng giảm thiểu của các kỹ thuật tốt nhất hiện có trong việc xử lý phân/ phân bón hữu cơ. Khu vực nghiên cứu là các vùng Leningrad và Kaliningrad, nằm trong khu vực lưu vực biển Baltic thuộc phần lãnh thổ Nga. Tổng lượng ô nhiễm lan tỏa năm 2017 được ước tính theo phương pháp của Nga và Belarus dựa trên các tính toán về mật độ gia súc và tổng lượng bón phân nitơ và photpho bằng phân hữu cơ. Tại vùng Leningrad, ước tính là 4571,53 t N năm−1 và 280,01 t P năm−1; tại vùng Kaliningrad—6132,48 t N năm−1 và 372,32 t P năm−1. Việc áp dụng các kỹ thuật tốt nhất hiện có và cung cấp cho tất cả các trang trại các kho chứa phân không thấm nước và các bệ chứa có thể giảm lượng ô nhiễm lan tỏa xuống lưu vực ở vùng Leningrad khoảng 1078,07 t N năm−1 và 55,5 t P năm−1, và tại vùng Kaliningrad—khoảng 1060,43 t N năm−1 và 40,5 t P năm−1. Sự giảm thiểu này sẽ đóng góp đáng kể vào việc đạt được các hạn mức đầu vào dưỡng chất được quy định cho Liên bang Nga theo Kế hoạch Hành động Biển Baltic của Ủy ban Helsinki (HELCOM).

Từ khóa

#ô nhiễm môi trường #nitơ #photpho #chất ô nhiễm lan tỏa #phân bón hữu cơ #vùng Leningrad #vùng Kaliningrad

Tài liệu tham khảo

Briukhanov, A., Kondratyev, S., Tarbaeva, V., Vorobyeva, E., & Oblomkova, N. (2017). Contribution of agricultural sources to nutrient load generated on the Russian part of the Baltic Sea catchment area. In A. Raupelienė (Ed.). Proceedings of the 8th International Conference “Rural development 2017: Bioeconomy challenges” (pp. 226–231). Aleksandras Stulginskis University, Akademija, Kauno distr, Lithuania. https://doi.org/10.15544/RD.2017.058 Briukhanov, A., Vasilev, E., Kozlova, N., & Shalavina, E. (2021). Assessment of nitrogen flows at farm and regional level when developing the manure management system for large-scale livestock enterprises in North-West Russia. Sustainability, 13, 6614. https://doi.org/10.3390/su13126614 Briukhanov, A. Y., Kondratyev, S. A., Oblomkova, N. S., Ogluzdin, A. S., & Subbotin, I. A. (2016a). Calculation method of agricultural nutrient load on water bodies. Technologies, Machines and Equipment for Mechanised Crop and Livestock Production, 89, 175–183. Briukhanov, A. Y., Trifanov, A. V., Spesivtsev, A. V., & Subbotin I. A. (2016b). Logical-linguistic modeling in addressing agro-environmental challenges. Proceedings of XIX IEEE International Conference on Soft Computing and Measurements (SCM), (pp. 164–166). Saint Petersburg, Russia, LETI University. https://doi.org/10.1109/SCM.2016.7519716 Briukhanov, A. Y., Vasilev, E. V., Kozlova, N. P., Shalavina, E. V., Subbotin, I. A., & Lukin, S. M. (2019). Environmental assessment of livestock farms in the context of BAT system introduction in Russia. Journal of Environmental Management, 246, 283–288. https://doi.org/10.1016/j.jenvman.2019.05.105 Chen, X., & Bechmann, M. (2019). Nitrogen losses from two contrasting agricultural catchments in Norway. Royal Society Open Science, 6(12), 190490. https://doi.org/10.1098/rsos.190490 Chubarenko, B. V., Kondratyev, S. A., & Bruikhanov, A. Y. (2017). Nutrient load from the Russian portions of the Vistula and Curonian lagoons catchments. Proceedings of the Russian Geographical Society, 149(4), 69–84. Danilov-Danilyan, V. I., Venitsianov, E. V., & Belyaev, S. D. (2020). Some problems of reducing the pollution of water bodies from diffuse sources. Water Resources, 47, 682–690. https://doi.org/10.1134/S0097807820050048 Database of municipal districts parameters. (2017). https://rosstat.gov.ru/storage/mediabank/Munst.htm. Accessed 16 Jun 2022. Gonzales-Inca, C. A., Kalliola, R., Kirkkala, T., et al. (2015). Multiscale landscape pattern affecting on stream water quality in agricultural watershed, SW Finland. Water Resources Management, 29, 1669–1682. https://doi.org/10.1007/s11269-014-0903-9 HELCOM. (1992). Recommendation 28E/4. Annex III Criteria and measures concerning the prevention of pollution from land-based sources to convention on the protection of the marine environment of the Baltic Sea area. https://helcom.fi/about-us/convention/annexes-to-the-convention-2/annex-iii/. Accessed 7 Sep 2021. HELCOM. (2003). The Baltic Sea Joint Comprehensive Environmental Action Programme (JCP) - Ten years of implementation. Baltic Sea Environment Proceedings No. 88. http://archive.iwlearn.net/helcom.fi/stc/files/Publications/Proceedings/bsep88.pdf. Accessed 6 Sep 2021. HELCOM. (2007). HELCOM Baltic Sea Action Plan. https://helcom.fi/baltic-sea-action-plan/. Accessed 7 Sep 2021. HELCOM. (2017). Calculation of the fulfillment of the nutrient input ceilings by 2017. https://helcom.fi/wp-content/uploads/2020/08/Calculation-of-the-fulfillment-of-the-nutrient-input-ceilings-by-2017.pdf. Accessed 14 Sep 2021. HELCOM. (2018a). Input of nutrients by the seven biggest rivers in the Baltic Sea region. Baltic Sea Environment Proceedings No.161. https://helcom.fi/wp-content/uploads/2019/12/BSEP163.pdf. Accessed 9 Sep 2021. HELCOM. (2018b). Sources and pathways of nutrients to the Baltic Sea. Baltic Sea Environment Proceedings 153. https://www.helcom.fi/wp-content/uploads/2019/08/BSEP153.pdf. Accessed 9 Sep 2021. HELCOM. (2019). Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water). https://helcom.fi/media/publications/PLC-Water-Guidelines-2019.pdf. Accessed 16 Jun 2022. Intensive rearing of pigs: Information and technical BAT reference book. (2017a). http://www.burondt.ru/NDT/NDTDocsDetail.php?UrlId=1138&etkstructure_id=1872. Accessed 16 Jun 2022. Intensive rearing of farm poultry: Information and technical BAT reference book. (2017b). http://burondt.ru/NDT/NDTDocsDetail.php?UrlId=1140&etkstructure_id=1872. Accessed 16 Jun 2022. Jakobsson, C. (ed). (2012). Sustainable Agriculture. 1st ed. Uppsala: Baltic University Press, 505. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173215. Accessed 29 Jun 2021. Jansson, T., Andersen, H. E., Hasler, B., et al. (2019a). Can investments in manure technology reduce nutrient leakage to the Baltic Sea? Ambio, 48, 1264–1277. https://doi.org/10.1007/s13280-019-01251-5 Jansson, T., Andersen, H. E., Gustafsson, B. G., et al. (2019b). Baltic Sea eutrophication status is not improved by the first pillar of the European Union Common Agricultural Policy. Regional Environmental Change, 19, 2465–2476. https://doi.org/10.1007/s10113-019-01559-8 Kaur, K., Vassiljev, A., Annus, I., & Stålnacke, P. (2017). Source apportionment of nitrogen in Estonian rivers. Journal of Water Supply: Research and Technology-Aqua, 66(7), 469–480. https://doi.org/10.2166/aqua.2017.036 Loague, K., & Corwin, D. L. (2006). Point and nonpoint source pollution. In: Encyclopedia of Hydrological Sciences. Part 8. Water Quality and Biogeochemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa097 Luo, X., & Yang, J. (2019). A survey on pollution monitoring using sensor networks in environment protection. Journal of Sensors, 2019, 6271206. https://doi.org/10.1155/2019/6271206 Methodology for calculating nutrient loss and assessment of the future pollution state of small rivers 0212.19–99. (1999). http://pravo.levonevsky.org/bazaby11/republic47/text097/index.htm. Accessed 6 Sep 2021. Nainggolan, D., Termansen, M., Gyldenkarne, S., Andersen, H. E., & Hasler, B. (2018). Water quality management and climate change mitigation: Cost-effectiveness of joint implementation in the Baltic Sea Region. Ecological Economics, 144, 12–26. https://doi.org/10.1016/j.ecolecon.2017.07.026 Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2011). Diffuse surface water pollution: Driving factors for different geoclimatic regions. Water Resources Management, 25, 3635. https://doi.org/10.1007/s11269-011-9874-2 Popov, V. D., Spesivtsev, A. V., Sukhoparov, A. I., & Spesivtsev, V. A. (2016). Use of logical-linguistic models to predict the retained biological potential of grasses during their conservation. Proceedings of XIX IEEE International Conference on Soft Computing and Measurements (SCM), (pp. 244–246). Saint Petersburg, Russia, LETI University. https://doi.org/10.1109/SCM.2016.7519741 Pozdnyakov, Sh. R., & Kondratyev, S. A. (2017). Formation of nutrient load on the Baltic Sea from the Russian territory and the possibility of its reduction in accordance with the requirements of the HELCOM Baltic Sea Action Plan. Regional Ecology, 1(47), 65–73. Sandström, S., Futter, M., Kyllmar, K., Bishop, K., & O’Connel, l D. & Djodjic, F. (2019). Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Science of the Total Environment, 71, 134616. https://doi.org/10.1016/j.scitotenv.2019.134616 Subbotin, I. A., & Vasilev, E. V. (2021). Forecasting model the complex negative impact of agricultural production technologies on water bodies. Engineering Technologies and Systems, 31(2), 227–240. https://doi.org/10.15507/2658-4123.031.202102.227-240 Svendsen, L. M. (ed). (2019). Applied methodology for the PLC-6 assessment. https://helcom.fi/wp-content/uploads/2020/01/PLC-6-methodology.pdf. Accessed 6 Sep 2021. Szalińska, E., Orlińska-Woźniak, P., & Wilk, P. (2018). Nitrate vulnerable zones revision in Poland – Assessment of environmental impact and land use conflicts. Sustainability, 10(9), 3297. https://doi.org/10.3390/su10093297 Vasileva, N. S., Vorobyeva, E. A., Minin, V. B., & Vasilev, E. V. (2019). Survey of manure storages in Leningrad Region. Technologies, machines and equipment for mechanised crop and livestock production, 3(100), 179–187. https://doi.org/10.24411/0131-5226-2019-10201