Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy
Tài liệu tham khảo
Pasupuleti, 2012, Antimicrobial peptides: key components of the innate immune system, Crit. Rev. Biotechnol., 32, 143, 10.3109/07388551.2011.594423
Wimley, 2011, Antimicrobial peptides: successes, challenges and unanswered questions, J. Membr. Biol., 239, 27, 10.1007/s00232-011-9343-0
Ladokhin, 1995, Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching, Biophys. J., 69, 1964, 10.1016/S0006-3495(95)80066-4
Matsuzaki, 1995, Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers, Biochemistry, 34, 12553, 10.1021/bi00039a009
Ladokhin, 1997, Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin, Biophys. J., 72, 1762, 10.1016/S0006-3495(97)78822-2
Matsuzaki, 1997, Pore formation and translocation of melittin, Biophys. J., 73, 831, 10.1016/S0006-3495(97)78115-3
Pramanik, 2000, Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy, Chem. Phys. Lipids, 104, 35, 10.1016/S0009-3084(99)00113-9
Yu, 2008, Investigation of the mechanisms of antimicrobial peptides interacting with membranes by fluorescence correlation spectroscopy, Open Chem. Phys. J., 1, 62, 10.2174/1874412500801010062
Yu, 2009, Interaction of an artificial antimicrobial peptide with lipid membranes, Biochim. Biophys. Acta, 1788, 333, 10.1016/j.bbamem.2008.10.005
Blicher, 2009, The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics, Biophys. J., 96, 4581, 10.1016/j.bpj.2009.01.062
Krichevsky, 2002, Fluorescence correlation spectroscopy: the technique and its applications, Rep. Prog. Phys., 65, 251, 10.1088/0034-4885/65/2/203
Ries, 2012, Fluorescence correlation spectroscopy, Bioessays, 34, 361, 10.1002/bies.201100111
Magzoub, 2005, Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins, Biochim. Biophys. Acta, 1716, 126, 10.1016/j.bbamem.2005.09.009
Hirai, 1979, A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera), Chem. Pharm. Bull. (Tokyo), 27, 145
Zasloff, 2002, Antimicrobial peptides of multicellular organisms, Nature, 415, 389, 10.1038/415389a
Yeung, 2011, Multifunctional cationic host defence peptides and their clinical applications, Cell. Mol. Life Sci., 68, 2161, 10.1007/s00018-011-0710-x
Yeaman, 2003, Mechanisms of antimicrobial peptide action and resistance, Pharmacol. Rev., 55, 27, 10.1124/pr.55.1.2
Brogden, 2005, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 3, 238, 10.1038/nrmicro1098
Todokoro, 2006, Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR, Biophys. J., 91, 1368, 10.1529/biophysj.106.082735
Wakamatsu, 1992, Membrane-bound conformation of mastoparan-X, a G-protein-activating peptide, Biochemistry, 31, 5654, 10.1021/bi00139a032
Schwarz, 1995, Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye, Biochim. Biophys. Acta, 1239, 51, 10.1016/0005-2736(95)00134-O
Arbuzova, 1996, Pore kinetics of mastoparan peptides in large unilamellar lipid vesicles, Prog. Colloid. Polym. Sci., 100, 345, 10.1007/BFb0115806
Arbuzova, 1999, Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis, Biochim. Biophys. Acta, 1420, 139, 10.1016/S0005-2736(99)00098-X
Matsuzaki, 1996, Transbilayer transport of ions and lipids coupled with mastoparan X translocation, Biochemistry, 35, 8450, 10.1021/bi960342a
Yandek, 2009, Wasp mastoparans follow the same mechanism as the cell-penetrating peptide transportan 10, Biochemistry, 48, 7342, 10.1021/bi9008243
Posokhov, 2008, Membrane insertion pathway of annexin B12: thermodynamic and kinetic characterization by fluorescence correlation spectroscopy and fluorescence quenching, Biochemistry, 47, 5078, 10.1021/bi702223c
Rusu, 2004, Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles, Biophys. J., 87, 1044, 10.1529/biophysj.104.039958
Rouser, 1966, Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots, Lipids, 1, 85, 10.1007/BF02668129
Rüttinger, 2008, Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy, J. Microsc., 232, 343, 10.1111/j.1365-2818.2008.02105.x
Wohland, 2001, The standard deviation in fluorescence correlation spectroscopy, Biophys. J., 80, 2987, 10.1016/S0006-3495(01)76264-9
Wimley, 2010, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol., 5, 905, 10.1021/cb1001558
Henriksen, 2011, Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles, Biophys. J., 101, 100, 10.1016/j.bpj.2011.05.047
Ludtke, 1996, Membrane pores induced by magainin, Biochemistry, 35, 13723, 10.1021/bi9620621
Bohrer, 1979, Influence of molecular configuration on the passage of macromolecules across glomerular capillary wall, J. Gen. Physiol., 74, 583, 10.1085/jgp.74.5.583