Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy

Biochimica et Biophysica Acta (BBA) - Biomembranes - Tập 1838 - Trang 2994-3002 - 2014
Kasper Kristensen1,2, Jonas R. Henriksen3,2, Thomas L. Andresen1,2
1Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
2Center for Nanomedicine and Theranostics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
3Department of Chemistry, DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Tài liệu tham khảo

Pasupuleti, 2012, Antimicrobial peptides: key components of the innate immune system, Crit. Rev. Biotechnol., 32, 143, 10.3109/07388551.2011.594423 Wimley, 2011, Antimicrobial peptides: successes, challenges and unanswered questions, J. Membr. Biol., 239, 27, 10.1007/s00232-011-9343-0 Ladokhin, 1995, Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching, Biophys. J., 69, 1964, 10.1016/S0006-3495(95)80066-4 Matsuzaki, 1995, Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers, Biochemistry, 34, 12553, 10.1021/bi00039a009 Ladokhin, 1997, Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin, Biophys. J., 72, 1762, 10.1016/S0006-3495(97)78822-2 Matsuzaki, 1997, Pore formation and translocation of melittin, Biophys. J., 73, 831, 10.1016/S0006-3495(97)78115-3 Pramanik, 2000, Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy, Chem. Phys. Lipids, 104, 35, 10.1016/S0009-3084(99)00113-9 Yu, 2008, Investigation of the mechanisms of antimicrobial peptides interacting with membranes by fluorescence correlation spectroscopy, Open Chem. Phys. J., 1, 62, 10.2174/1874412500801010062 Yu, 2009, Interaction of an artificial antimicrobial peptide with lipid membranes, Biochim. Biophys. Acta, 1788, 333, 10.1016/j.bbamem.2008.10.005 Blicher, 2009, The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics, Biophys. J., 96, 4581, 10.1016/j.bpj.2009.01.062 Krichevsky, 2002, Fluorescence correlation spectroscopy: the technique and its applications, Rep. Prog. Phys., 65, 251, 10.1088/0034-4885/65/2/203 Ries, 2012, Fluorescence correlation spectroscopy, Bioessays, 34, 361, 10.1002/bies.201100111 Magzoub, 2005, Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins, Biochim. Biophys. Acta, 1716, 126, 10.1016/j.bbamem.2005.09.009 Hirai, 1979, A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera), Chem. Pharm. Bull. (Tokyo), 27, 145 Zasloff, 2002, Antimicrobial peptides of multicellular organisms, Nature, 415, 389, 10.1038/415389a Yeung, 2011, Multifunctional cationic host defence peptides and their clinical applications, Cell. Mol. Life Sci., 68, 2161, 10.1007/s00018-011-0710-x Yeaman, 2003, Mechanisms of antimicrobial peptide action and resistance, Pharmacol. Rev., 55, 27, 10.1124/pr.55.1.2 Brogden, 2005, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 3, 238, 10.1038/nrmicro1098 Todokoro, 2006, Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR, Biophys. J., 91, 1368, 10.1529/biophysj.106.082735 Wakamatsu, 1992, Membrane-bound conformation of mastoparan-X, a G-protein-activating peptide, Biochemistry, 31, 5654, 10.1021/bi00139a032 Schwarz, 1995, Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye, Biochim. Biophys. Acta, 1239, 51, 10.1016/0005-2736(95)00134-O Arbuzova, 1996, Pore kinetics of mastoparan peptides in large unilamellar lipid vesicles, Prog. Colloid. Polym. Sci., 100, 345, 10.1007/BFb0115806 Arbuzova, 1999, Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis, Biochim. Biophys. Acta, 1420, 139, 10.1016/S0005-2736(99)00098-X Matsuzaki, 1996, Transbilayer transport of ions and lipids coupled with mastoparan X translocation, Biochemistry, 35, 8450, 10.1021/bi960342a Yandek, 2009, Wasp mastoparans follow the same mechanism as the cell-penetrating peptide transportan 10, Biochemistry, 48, 7342, 10.1021/bi9008243 Posokhov, 2008, Membrane insertion pathway of annexin B12: thermodynamic and kinetic characterization by fluorescence correlation spectroscopy and fluorescence quenching, Biochemistry, 47, 5078, 10.1021/bi702223c Rusu, 2004, Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles, Biophys. J., 87, 1044, 10.1529/biophysj.104.039958 Rouser, 1966, Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots, Lipids, 1, 85, 10.1007/BF02668129 Rüttinger, 2008, Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy, J. Microsc., 232, 343, 10.1111/j.1365-2818.2008.02105.x Wohland, 2001, The standard deviation in fluorescence correlation spectroscopy, Biophys. J., 80, 2987, 10.1016/S0006-3495(01)76264-9 Wimley, 2010, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol., 5, 905, 10.1021/cb1001558 Henriksen, 2011, Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles, Biophys. J., 101, 100, 10.1016/j.bpj.2011.05.047 Ludtke, 1996, Membrane pores induced by magainin, Biochemistry, 35, 13723, 10.1021/bi9620621 Bohrer, 1979, Influence of molecular configuration on the passage of macromolecules across glomerular capillary wall, J. Gen. Physiol., 74, 583, 10.1085/jgp.74.5.583