Quantification of co-occurring reaction rates in deep subseafloor sediments

Geochimica et Cosmochimica Acta - Tập 72 - Trang 3479-3488 - 2008
Guizhi Wang1, Arthur J. Spivack1, Scott Rutherford2, Uri Manor3, Steven D’Hondt1
1Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, RI 02882, USA
2Department of Natural Sciences, Roger Williams University, One Ferry Road, Bristol, RI 02809, USA
3Parks College of Engineering, Saint Louis University, Saint Louis, MO 63130, USA

Tài liệu tham khảo

Arndt, 2006, Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise), Geochim. Cosmochim. Acta., 70, 408, 10.1016/j.gca.2005.09.010 Baker, 1991, Large-scale lateral advection of seawater through oceanic crust in the central equatorial Pacific, Earth Planet. Sci. Lett., 105, 522, 10.1016/0012-821X(91)90189-O Berg, 1998, Interpretation of measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 1500, 10.4319/lo.1998.43.7.1500 Berner, 1964, An idealized model of dissolved sulfate distribution in recent sediments, Geochim. Cosmochim. Acta, 28, 1497, 10.1016/0016-7037(64)90164-4 Berner, 1980 Bevington, 2003 Bockris, 1970, vol. 1 Bottcher, 2004, Microbial sulfate reduction in deep sediments of the Southwest Pacific (ODP Leg 181, Sites 1119–1125): evidence from stable sulfur isotope fractionation and pore water modeling, Mar. Geol., 205, 249, 10.1016/S0025-3227(04)00026-X Boudreau, 1997 Bralower T. J., Premoli Silva I., Malone M. J., et al. (2002). Proc. ODP, Init. Repts. 198 (Online). Available from: http://www-odp.tamu.edu/publications/198_IR/198ir.htm, accessed on August 8, 2006. Breitzke, 2000, Physical properties of marine sediments, 29 Burdige, 2006 Canfield, 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta, 53, 619, 10.1016/0016-7037(89)90005-7 Chambers J. M., Cleveland W. S., Kleiner B. and Tukey P. A. (1983) Graphing Methods for Data Analysis. Wadsworth International Group, Belmont, California, and Duxbury Press, Boston. D’Hondt, 2004, Distributions of microbial activities in deep subseafloor sediments, Science, 306, 2216, 10.1126/science.1101155 D’Hondt S., Jørgensen B. B., Miller D. J., et al. (2003) Proc. ODP Init. Repts. 201 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, USA. D’Hondt, 2002, Metabolic activity of subsurface life in deep-sea sediments, Science, 295, 2067, 10.1126/science.1064878 Devol, 1981, Are high rates of sulfate reduction associated with anaerobic oxidation of methane?, Nature, 291, 407, 10.1038/291407a0 Emerson, 1981, Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation, J. Mar. Res., 39, 139 Froelich, 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 43, 1075, 10.1016/0016-7037(79)90095-4 Hales, 1994, Respiration and dissolution in the sediments of the western North Atlantic: estimates from models of in situ microelectrode measurements of porewater oxygen and pH, Deep-Sea Res. I, I41, 695, 10.1016/0967-0637(94)90050-7 Jørgensen, 2001, Sulfate reduction and anaerobic methane oxidation in Black Sea sediments, Deep-Sea Res. I, 48, 2097, 10.1016/S0967-0637(01)00007-3 Kleinbaum, 1978 Knies J., Damm E., Gutt J., Mann U. and Pinturier L. (2004) Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: evidences for past seepages. Geochem. Geophys. Geosyst. 5. doi:10.1029/2003GC000687. Koretsky, 2003, Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA), Biogeochemistry, 64, 179, 10.1023/A:1024940132078 Lagarias, 1998, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9, 112, 10.1137/S1052623496303470 2004 McDuff, 1979, Determining diffusion coefficients in marine sediments: a laboratory study of the validity of resistivity techniques, Am. J. Sci., 279, 666, 10.2475/ajs.279.6.666 Mitterer, 2001, Co-Generation of hydrogen sulfide and methane in marine carbonate sediments, Geophys. Res. Lett., 28, 3931, 10.1029/2001GL013320 Parkes, 2005, Deep sub-seafloor prokaryotes stimulated at interfaces over geological time, Nature, 436, 390, 10.1038/nature03796 Schippers, 2005, Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria, Nature, 433, 861, 10.1038/nature03302 Schulz, 2000, Quantification of early diagenesis: dissolved constituents in marine pore water, 85 Shipboard Scientific Party (1992) Site 846. In Proc. ODP Init. Repts. 138 (Pt. 1) (eds. L. Mayer, N. Pisias, T. Janecek, et al.). Ocean Drilling Program, College Station, TX, pp. 265–333. Shipboard Scientific Party (2003) Site 1226. In Proc. ODP Init. Repts. 201 [CD-ROM] (eds. S. L. D’Hondt, B. B. Jørgensen, D. J. Miller, et al.). Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, USA. Von Rosenberg, 1969 Wang G. (2006) Metabolic Activities in Deep Subseafloor Sediments. Ph.D. thesis. University of Rhode Island. Westrich, 1984, The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested, Limnol. Oceanogr., 29, 236, 10.4319/lo.1984.29.2.0236 Whiticar, 1990, Characterization of sorbed volatile hydrocarbons from the Peru margin, Leg 112, Site 679, 680/681, 682, 684, and 686/687, Proc. ODP Sci. Res., 112 Wortmann, 2006, A 300m long depth profile of metabolic activity of sulfate-reducing bacteria in the continental margin sediments of South Australia (ODP Site 1130) derived from inverse reaction-transport modeling, Geochem. Geophys. Geosyst., 7, 10.1029/2005GC001143